把下列函数展开成指定点z
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:10:41
再问:真的不好意思,实在看不清楚
(1)e^(z/(z-1))无法给出通式1.e^(z/(z-1))=e^(1+1/(z-1))可以按照泰勒展开令[e^(1+1/(z-1))](n)'代表n次导数那么[e^(1+1/(z-1))](1
第一个存在第二个不存在再问:能否解出来过我看一下再答:先采纳再答: 再问:十分感谢再问:极限为0是第几题再答:第二个再问:那存在极限么?再答:嗯嗯再问:能在解清楚点么?再答:你那样写就行了再
f(x)=(cosx)^2=(cos2x+1)/2=cos2x/2+1/2=(i从0到正无穷){(-1)^i【(2x)^(2i)】/(2i)!}/2+1/2=(i从0到正无穷)(-1)^i*2^(2i
用泰勒公式代入就行啊f(x)=f(x0)+f'(X0)(X-XO)+.+fn(xo)(x-xo)n/n!分子上的n,第一个是f(x)的n阶导,第二个是n次方.
1.f'(x)=15x^2-4x+1f'(0)=12.f'(x)=(sinx-xcosx)/[(sinx)^2]f'(π/2)=13.表意不明:若f(x)=[x(8-x)]^(1/3)则f'(x)=(
f(z)=1-2/(z+2)=1-2/[(z-2)+5]=1-0.4*1/[1+(z-2)/5]=1-0.4*Σ【-(z-2)/5】^n(0到+∞)
1、x^4/(1-x)=x^4(1+x+x²+...)=x^4+x^5+x^6+...=Σx^(n+4)n=0→∞2、lnx=ln(2+x-2)=ln[2(1+(x-2)/2)]=ln2+l
Δy/Δx=[√(x+Δx)-√x]/Δx=[√(x+Δx)-√x][√(x+Δx)+√x]/{Δx[√(x+Δx)+√x]}=1/[√(x+Δx)+√x]当Δx趋向于0时,x=4代入,得y′=1/4
公式(a^x)’=(a^x)*lna所以y=2^x的导数应该为2^x*ln2,在x=0处,导数等于ln2
给你个网址,别人已有解答哦:
1.f(x)=(1+x)ln(1+x),f'(x)=1+ln(1+x),f''(x)=1/(1+x)=∑n:0->∞(-1)^nx^n,收敛域(-1,1)积分:f'(x)=∑n:0->∞(-1)^nx
都已经做到了2/(z+2)-1/(z+1)后面就是直接套泰勒公式1/(x+a)的泰勒展开就行了啊!~再问:恩恩,这样做确实可以,但是为什么用第一种不行呀。。。??~这点不解ing。。。再答:恩,个人认
再答:展开幂级数就不写了书上有现成的公式直接带进去就好了主要是求这个函数的高阶导
解由x^2+y^2≤4设x=ksina,y=kcosa故k^2sin^2a+k^2cos^2a≤4即k^2≤4即-2≤k≤2则z=xy=ksinakcosa=k^2*1/2×2sinacosa=1/2
1f'(x)=x^2-3*x=0===>x=0or32f'(x)=(2*x*(x^2-1))/(x^2+1)^2-(2*x)/(x^2+1)=0===>x=0偶个人为小姑娘应该多看看书啦~
因为泰勒展开在局部与函数的近似比较好离那个点远了误差就大了所以看实际应用的需要实际需要在哪点周围近似那就在哪点展开而对于应试的考试来说就没什么区别了
(1)e^(z/(z-1))无法给出通式1.e^(z/(z-1))=e^(1+1/(z-1))可以按照泰勒展开令[e^(1+1/(z-1))](n)'代表n次导数那么[e^(1+1/(z-1))](1
f(z)=1-2/(z+2)=1-2/[(z-2)+5]=1-0.4*1/[1+(z-2)/5]=1-0.4*Σ【-(z-2)/5】^n(0到+∞)
1/z=1/(1-(1-z))=1+(1-z)+(1-z)^2+.f(z)=1/3*(1+(1-z)+(1-z)^2+.)+2