把ZOX面上的抛物线Z=X^2 1绕X轴旋转一周,求所形成的旋转曲面的方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:07:32
两方程联立,消去z,得:(x-1/2)^2+(y-1/2)^2=1/2所以在XOY平面投影方程为:(x-1/2)^2+(y-1/2)^2=1/2同理可得在XOZ和YOZ平面内投影分别是:3z-z^2+
y^2=4x所以z=x^2+2x+3=x^2+2x+1+2=(x+1)^2+2x=y^2/4所以x≥0所以x=0,z最小=3
令z=4得x²+y²=4,所以旋转抛物面z=x2+y2(0≤z≤4)在xOy面上的投影为x²+y²≤4.令x=0得z=y²,所以旋转抛物面z=x2+y
y'=4x.为4.@z/@l=1/(x+y)cosa+1/(x+y)cosb,cosa=4/sqrt17,算一下就行
解x^2+2y^2-z=0,z=x+1,y=0方程组得2点坐标(1/2+√3/2,0,3/2+√3/2),(1/2-√3/2,0,3/2-√3/2)∵平面z=x+1垂直于y=0坐标面,∴曲线x^2+2
你的答案是对的,参考答案是错的.显然该曲线在xoy面上的投影是不过原点的,而参考答案的方程有(0,0)的解,过原点.
先求抛物线y^2=4x上点(1,2)处沿着这抛物线在该点处偏向x轴正向方向的切线向量r:y^2=4x,2ydy=4dx,dy/dx=2/y,在点(1,2)处的这个切线的斜率=k=dy/dx|(1,2)
y^2≥0,又y^2=4x,因此4x≥0x≥0y^2=4x代入z=x^2+y^2/2+3z=x^2+y^2/2+3=x^2+2x+3=(x+1)^2+2当x=0时,z有最小值=1^2+2=3
因为Z=1,所以方程化解为X^2+Y^2=4所以是一个圆,半径为2
先求切线的方向向量,曲线方程写为:f(x,y)=y²-x=0fx=-1,fy=2y,则切线方向向量为:(-1,2y),将(1,1)代入得:(-1,2),单位化(-1/√5,2/√5)即cos
空间曲线在平面投影求空间曲线的射影柱面,设空间曲线方程为 先消元,若求xOy平面的投影就消z如题中①式减②式得 即为相应的空间曲线的射影柱面&n
将XOZ坐标面上的抛物线Z(平方)=5X,y=0,绕X轴旋转一周,求所生成的旋转曲面的方程.--旋转时,由于x坐标没变,故仍为x,而原曲线上某一点饶x轴时,其到x轴距离为根号下y^2+z^2(其实等于
z^3=5*√(x^2+y^2)再问:为什么不是z^6=25*(x^2+y^2)再答:其实看你怎么理解,这个图像是八个卦限都有的如果两边平方,开根号时加±即可再问:那答案究竟是z^3=5*√(x^2+
将XOZ坐标面上的抛物线Z(平方)=5X,y=0,绕X轴旋转一周,求所生成的旋转曲面的方程.--旋转时,由于x坐标没变,故仍为x,而原曲线上某一点饶x轴时,其到x轴距离为根号下y^2+z^2(其实等于
1.z=x^2+y^22.f(x,y)=[(2/x)^2-4(1/y)^2]*xy/83.f'x(x0,y0)=0且f'y(x0,y0)=0一、假设为X+kY+mZ=n,则有-3+2k+7m=n;2+
1、不会是打错了吧?这个……如果按x^2(4y)^2z^2=4与xz=a相交计算的话,那就是交为y=1/2a和y=-1/2a,此两条直线即为投影线.2、这个……因为我是大学生,所以是用泰勒展开算的;因
您够可以的了,哈哈哈,比这个好积的想来不多了
可能是哪里想不通吧~以✔10为上限的是投影法,以✔(2x)为上限的是切片法再问:懂了懂了,一时糊涂了,谢谢你!
z=2-(x^2+y^2)z'x=-2xz'y=-2ydS=√(1+4x^2+4y^2)dxdy,∑在xoy平面的投影x^2+y^2=2A=∫∫√(1+4x^2+4y^2)dxdy(下面用极坐标=∫(