BF⊥AC于M,若AC=5,EH=,则AF=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:08:57
∵AB=CD,AF=CE,∠AFB=∠CED=90°∴△ABF≌△CDE∴BF=DE∵DE⊥AC于E,BF⊥AC于F∴BF∥DE∴∠MBF=∠EDM又∵∠AFB=∠CED,BF=DE∴△BMF≌△DM
证明:(1)AB=CD,AF=CE,BF⊥AC,DE⊥ACRt△ABF≌Rt△CDE(HL)∴DE=BF∴Rt△BMF≌Rt△DME(AAS)∴BM=DM,ME=MF再答:(2)AF=CE,AB=CD
(1)DB=DCBF=CE所以△BDF≌△DEC(HL)所以DE=DF(2)因为△BDF≌△DEC所以∠B=∠C所以△ABC是等腰三角形所以∠BAD=∠DAC因为∠PNA=∠PMA=90AP=AP所以
证明:因为DE⊥AC于E,BF⊥AC于F且AB=CD,AF=CD所以△AFB≌△CED即BF=DE且∠BMF=∠DME所以△BMF≌△DME即FM=EM
因为DE⊥AC,BF⊥AC所以∠AFB=∠CED=90°因为AB=CD,AF=CE所以△AFB≌△CED即BF=DE因为对顶角相等所以∠BMF=∠DME所以△BMF≌△DME即FM=EM,BM=DM再
(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.
连结DF、BEDE⊥AC,BF⊥AC,∠AFB=∠CED=90°.AF=CE,AB=CD.△AFB≌△CED,BF=DE又因为DE‖BF,四边形DEBF是平行四边形,所以对角线BD和EF互相平分MB=
1)因为DE垂直AC于E点,BF垂直AC于F点,所以∠BFA=∠DEC=90°,因为AB=CD,AF=CE,所以△BFA全等于△DEC(HL),所以BF=DE,因为∠EMD=∠FMB(对顶角),因为∠
BF²=AB²-AF²=CD²-CE²=DE²,BF=DE,BF⊥AC⊥DE,BF//=DE,BEDF平行四边形,BD,EF相互中分.MB=
AD=CD?写错了吧,是不是AB=CD,或者AD=CB?再问:是AB=CD再答:利用全等三角形即可证明两问当中,M是BD和EF中点。第一问:AB=CD,AF=CE,角AFB=角CED=90,则ABF全
1证明∵DE⊥ACBF⊥AC∴DE∥BF∴∠EDB=∠FBD∠AFD=∠CED=90°又∵AB=CDAF=BD∴△ABF全等于△CDE∴BF=DE又∵∠EDB=∠FBDBF=DE∠AFD=∠CED=9
(一)证明:因为DE垂直于AC,BF垂直于AC,所以DE//BF,角CED=角AFB=90度,又因为AB=CD,AF=CE,所以直角三角形ABF全等于直角三角形CDE(H、L)所以DE=BF,连结BE
∵DE⊥AC于点E,BF⊥AC于点F∴∠AFB=∠CED=90∴△AFB和△CED是直角三角形∵AB=CDAF=CE∴△AFB≌△CEDHL∴DE=BF∵∠DME=∠BMF∠DEM=∠BFM=90DE
有你想要的再问:不是一个题好不好再答:方法是一样的再问:我看不了啊再答:(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中
证明:∵AB⊥FC,DE⊥FC∴∠ABC=∠DEF=90,∠ABF=∠DEC=90∵BC=CE+BE,EF=BF+BE,BF=CE∴BC=EF∵AC=DF∴△ABC≌△DEF(HL)∴∠A=∠D,∠C
∵DE⊥AC,BF⊥AC∴△ABF和△CDE是直角三角形∵AB=CDBF=DE∴Rt△ABF≌Rt△CDE(HL)∴∠C=∠A∴AB∥CD(内错角相等)
证明:连接AF,∵BF=AC,∴弧AB+弧AF=弧AF+弧CF.∴弧AB=弧CF.∴∠F=∠FBC.又∵∠CAM=∠CBM,∴∠F=∠MAN.∵∠AMF=∠NMA,∴△AMF∽△NMA.∴AM/NM=
应为ABCD是平行四边形所以AD=BC,角EAO=角FCO因为DE=BF所以AE=AD-DE=BC-BF=CF因为角EAO=角FCO,角AOE=角COF,AE=CF所以三角形AOE全等于三角形COF(
AB‖DC,所以角BAF=角ECDAE=CF,所以AF=CEDE⊥AC于点E,BF⊥AC于点F在三角形ABF与三角形ECD中角BAF=角ECDAF=CE角AFB=角CED所以三角形ABF全等于三角形E