扇形AOB中 OA=3 ∠AOB=120° 正方形BCDE 当点C

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:58:19
扇形AOB中 OA=3 ∠AOB=120° 正方形BCDE 当点C
(2011•莱芜)如图①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中

∵在△AOB中,∠AOB=90°,OA=3,OB=4,∴AB=5,∴图③、④的直角顶点坐标为(12,0),∵每旋转3次为一循环,∴图⑥、⑦的直角顶点坐标为(24,0),∴图⑨、⑩的直角顶点为(36,0

如图,在扇形OAB中,半径OA=4,∠AOB=90°,BC=2AC,点P是OA上的任意一点,求PB+PC的最小值.

先作点C关于直线OA的对称点C′,连接BC′,则BC′的长即为PB+PC的最小值,再过点O作OD⊥BC于点D,连接OC′,∵BC=2AC,∠AOB=90°,∴AC=30°,∴∠AOC′=30°,∴∠B

如图:扇形OAB的圆心角∠AOB=120°,半径OA=6cm,

(1)如图所示:(2)扇形的圆心角是120°,半径为6cm,则扇形的弧长是:nπr180=120•π•6180=4π则圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π

已知:如图,直角三角形中AOB中,∠AOB=90°,OA=3cm

题目不完整无法完成缺图,不知道OB的长度或者三角形的锐角大小!1)求△OPQ的面积S,可用面积公式s=ah/2;所以S=OQ*(P的纵坐标)/2=Vq*T*(P的纵坐标)/2=Vq*T*(OA-Vp*

在扇形OAB中,半径OA=8cm,弧AB=12,则角AOB=____弧度,扇形OAB的面积

圆心角的弧度数=弧长/半径,因此角AOB=12/8=1.5弧度.填:1.5.而扇形的面积=1/2*弧长*半径=1/2*12*8=48cm^2.

如图,在扇形OAB中,⊙O1分别与AB、OA、OB切于点C、D、E,∠AOB=60°,⊙O的面积为4π,若用此扇形做一个

∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=12∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l)

在扇形AOB中,∠AOB=90°,弧AB的长为l,求此扇形内切圆的面积.

设扇形AOB所在圆半径为R,此扇形内切圆的半径为r,如图所示,则有R=r+2r,AB=l=π2•R.由此可得r=2(2−1)lπ=2(2−1)π,则内切圆的面积S=πr2=12−82πl2=12−82

在扇形AOB中,∠AOB=π/3,弧AB的长度为l,求此扇形内切圆的面积

设扇形半径为R,内切圆半径为r,内切圆圆心为O’,则:弧AB长度l=π/3*R即:R=3l/π又∠AOB=π/3∴1/2∠AOB=π/6可得:OO'=2r则2r+r=R∴r=1/3R=l/πS=π*r

如图,在扇形OAB中,圆O1分别于弧AB,OA,OB切于点C,D,E,∠AOB=60°,圆O1的面积是4π,用这个扇形做

∵⊙O1的面积为4π,∴⊙O1的半径为2,连接O1D,OO1,∵OA、OB是⊙O1的切线,∴∠DOO1=1/2∠AOB=30°,∠ODO1=90°,∴OO1=2O1D=4,∴扇形的半径(圆锥的母线长l

已知扇形AOB,∠AOB=90度,OA=OB=R,以OA为直径作半圆圆M,作M∥OB交AB于P,交圆M于点Q,求阴影部分

/>∵OM=1/2R,OP=OA=R∴∠OPM=30°∴∠AOP=60°,MP=√3/2R∴S扇形OAP=1/6πR²,S扇形MAQ=1/16πR²,S△OMP=3/8R²

如图,扇形OAB的半径OA=3,圆心角∠AOB=90°,点C是弧AB上异于A、B的动点,

DG长度不变这是因为DG=1/3*DE=1/3*√(OD^2+OE^2)=1/3*√(OD^2+DC^2)=1/3*OC=1CD长度会变,因为D接近A时,CD趋向于0,而D接近B时,CD趋向于3.CG

如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交

连接OD,教CB于点H,OD为半径,所以OD=6.三角形OBC与CBD全等,所以OH=HD=3.在直角三角形中根据勾股定理可得HB=3√3.又三角形CHD与BHD相似,所以根据等比三角形的性质可得CD

已知:如图3,扇形AOB 中,∠AOB=45°,AD=4cm,弧CD=3cm,则图中阴影部分的面积是

原题中弧CD应该=3πcm吧OD=3π*(360/45)/2=12cmAO=4+12=16cmS阴影=(16^2-12^2)π/(360/45)=14πcm^2如果是弧CD应该=3cm方法是一样的,改

扇形OAB中,∠AOB=90°,⊙P与OA、OB分别相切于点F、E,并且弧AB切于点C,则扇形OAB面积与⊙P的面积比是

设扇形的半径为rOP=根号2×PF=根号2×PC又:OP+PC=OC=r得(根号2+1)×PC=r,PF=r/(根号2+1)扇形AOB面积:πr^2/4圆P面积:π[r/(根号2+1)]^2(πr^2

如图,在扇形OAB中,∠AOB=90°,半径=6.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA

周长C阴影=弧AD+弧BD+AC+CD+BD∵OC=CD∴AC+CD=AC+CO=OA=6∵BD=OB∴BD=6∴弧ADB=(90°*π*6)/180=3π∴C阴影=12+3π面积S扇形OAB=(90

在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA&

周长C阴影=弧AD+弧BD+AC+CD+BD∵OC=CD∴AC+CD=AC+CO=OA=6∵BD=OB∴BD=6∴弧ADB=(90°*π*6)/180=3π∴C阴影=12+3π面积S扇形OAB=(90

扇形OAB中,∠AOB=90,半径=2,C是线段AB的中点,CD平行OA,交弧AB于点D,则CD=

设CD平行OA交OB于E,∠AOB=90,CD平行OA,∴∠OEB=90,DE=2*1/2=1,OE=1/2OD,DE=√(2²-1²)=√3,CD=√3-1

已知;如图,RT△AOB中,∠AOB=90°,OA=3CM,OB=3根号3CM.

1.过P做OAOB的垂线从而求出P的坐标为P(根号3*t,3-t/2)而Q的坐标为Q(2t,0)而△OPQ的高即为P的纵坐标所以S△OPQ=1/2*OQ*(3-t/2)=t(3-t/2)2.BQ=OB

在扇形OAB中,半径OA为4cm,点C是半径OB的中点,∠AOB=120,求阴影部分的面积.

连结AB∵∠AOB=120°,AO=BO∴容易求得S△AOB=4根号3∵点C是OB中点,∴S△AOC=S△ACB=1/2S△AOB=2根号3又S扇形OAB=8π∴阴影部分面积=S扇形OAB-S△AOC

..在扇形OAB中,半径OA为4cm,点C是半径OB的中点,∠AOB=120,求阴影部分的面积.

过点A作OB的垂线,交BO的延长线于点E∵∠AOB=120°∴∠AOD=60°∵OA=4∴OE=2,AE=2√3∴S△AOC=1/2*2*2√3=2√3∵S扇形OAB=1/3*π*4²=(1