所确定d^2y dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:34:28
xy+e^y=y+1(1)求d^2y/dx^2在x=0处的值:(1)两边分别对x求导:y+xy'+e^yy'=y'y/y'+x+e^y=1(2)(2)两边对x再求导一次:(y'y'-yy'')/y'^
e(-xy)d(-xy)=(xdy+ydx)d(exy^2/2)=d(xy)exy^2=2xy+C,C为任意常数,或x恒等于0,或y恒等于0,或x和y都为常数不知道有没有错呢···
第一题是3/(4-4t)第二题是1/f''(t)
φ(t)=acost,ψ(t)=bsint,φ'(t)=-asint,ψ'(t)=bcost,φ"(t)=-acost,ψ"(t)=-bsint,φ'3(t
红色圈出再问:那在试卷上怎么答呢再答:如果是大题目,直接写出这两个求导方程,像我这么叙述就行了,个人经验,仅供参考再问:能帮我再解以下另外那几个数学题吗再答:我尽力
x=arcsint;y=sqrt(1-t^2)所以dy/dx=(dy/dt)/(dx/dt)=(-2t/sqrt(1-t^2))/(1/sqrt(1-t^2))=-t=-sinx所以d^2y/dx^2
d(xy)可以理解为xy的一个微小变化量.当x变化微小量dx成为x+dx,y变化微小量dy成为y+dy,所以对应xy(初值)就变化成(x+dx)(y+dy)(末值),变化量即为末值减初值.再问:三年前
不够明白,是这样吗:
由CD两点所确定的斜率k=2-(-2)/4-2=2设这个角为α,则有tanα=2AB的倾斜角是2α,则有k(AB)=tan2α=2tanα/(1-(tanα)^2)=4/(1-4)=-4/3所以AB的
x=e^t*sinty=e^t*cost所以dx/dt=e^t*(sint+cost),dy/dt=e^t*(cost-sint)故dy/dx=(dy/dt)/(dx/dt)=(cost-sint)/
两边x求导得y'e^x+ye^x+y'/y=0y'=-ye^x/(e^x+1/y)=-y^2e^x/(ye^x+1)y''=[(-2yy'e^x-y^2e^x)(ye^x+1)+y^2e^x(y'e^
x-y+1/2siny=0F(x,y)=y-x-1/2siny=0F,Fx,Fy在定义域的任意点都是连续的,F(0,0)=0Fy(x,y)>0f'(x)=-Fx(x,y)/Fy(x,y)=1/(1-1
由于不是单连通区域,因此不能说积分与路径无关,对于任意的两条路径,要看原点是否在这两条路径所围区域内,如果原点不在其内,则与路径无关;如果原点在这个区域内,积分与路径是有关的.你所说的x²+
没错,就是利用了复合函数求导的乘法原理:(AB)'=A'B+AB'd(xy)/dx=ydx/dx+xdy/dx=y+xy'
关于x求导得:2x-2yy′=0y′=x÷yy′′=(y-xy′)÷y^2=(y^2-x^2)÷y^3=−4÷y^3
d(xe^y+ye^x)=0=d(xe^y)+d(ye^x)=xde^y+e^ydx+yde^x+e^xdy=xe^ydy+e^ydx+ye^xdx+e^xdy=(xe^y+e^x)dy+(e^y+y
解法一:所求体积=∫[π(2x-x²)-πx²]dx=2π∫(x-x²)dx=2π(1/2-1/3)=π/3;解法二:所求体积=∫[2πy*y-2πy*(1-√(1-y&
1dy/dt=3-3t^2;dx/dt=2-2t;dt/dx=1/(2-2t)d^2y/dx^2=d(dy/dx))/dx=[d(dy/dt*dt/dx)]/dt*dt/dx=d[(3-3t^2)/(
2ydx+(y^3-x)dy=0dx/dy-(1/2y)x=-y^2/2,这是一阶线性方程,由通解公式:e^∫(1/2y)dy=√yx=√y(C+∫[(-y^2/2)/√y]dy)=√y(C-(1/5
定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项.(这里所谓的一阶,指的是方程中关于Y的导数是一阶导数.)∵ydx+(x-lny)dy=0==>ydx/dy+x=