所有n阶对称矩阵关于矩阵的线性运算

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:14:34
所有n阶对称矩阵关于矩阵的线性运算
n阶实对称矩阵A为正定矩阵的充分必要条件

选A.  设A^-1的特征值为a1,a2,...an.则A的特征值为1/a1,1/a2,.1/an.因为所有an都大于0,所以所有1/an大于0.所以选A  另外B项如果改成a11>0以及各阶行列式的

设A为n阶对称矩阵,B为n阶反对称矩阵,证明:B的平方为对称矩阵,AB-BA也是对称矩阵

B^2=(-B^T)(-B^T)=(B^T)^2=(B^2)^T,说明B^2为对称矩阵(AB-BA)^T=(AB)^T-(BA)^T=(B^T)(A^T)-(A^T)(B^T)=(-BA)-(-AB)

验证n阶对称阵,对矩阵加法及矩阵的数乘构成数域R上的线性空间

因为矩阵的加法运算满足交换,结合,有零矩阵,有负矩阵矩阵的数乘运算也满足相应的4条运算性质所以若证明n阶对称阵对矩阵加法及矩阵的数乘构成数域R上的线性空间,只需证明n阶对称阵对矩阵加法及矩阵的数乘运算

证明:所有N阶对称矩阵组成(N^2+2N)/2维线性空间;所以反N阶对称矩阵组成(N^2-N)/2维线性空间;

n阶对称矩阵的主控元素是主对角线上方(含主对角线)的元素记Eij为第i行第j列元素为1,第j行第i列元素为1,其余全是0的n阶矩阵则Eij,i

假定n阶实对称矩阵A是严格对角占优的 且所有对角元素大于零 试证A一定是对称正定矩阵

这是清华大学的一个教案,你看一下里面关于圆盘定理的部分就清楚了.再问:�Ƕ���5.11�ģ�2��ô����ʾû����˵��֤���������Ȥ�Ķ����ˡ���再答:�Ƕ���5.11��1

设A,B都是n阶对称矩阵,证明AB为对称矩阵的充分必要条件是AB=BA

充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB

关于N阶矩阵的det.

不是,不可以!只有少数情况下可以用矩阵分块来做,分成准上三角或准下三角才可以按你想的那样去做,一般来说是不相等的,只有能分解成以上两种特殊情况才可以.也就是说A,B一般不等于|AD-CB|C,DA,O

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

设A是n阶对称矩阵,B是n阶反对称矩阵,证:3A-B的平方是对称矩阵

由已知,A'=A,B'=-B.所以(3A-B)^2'=(3A-B)'(3A-B)'=(3A+B)(3A+B)呵呵结论不对!

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

证明:对任意的n阶矩阵A,A+A'为对称矩阵,A-A'为反对称矩阵.

...哥直接按定义证阿(A+A')'=A'+(A')'=A'+A=A+A'所以A+A'为对称矩阵(A-A')'=A'-(A')'=A'-A=-(A-A')所以A-A'为反对称矩阵

证明所有m*n矩阵的集合是一个m*n维的线性子空间

m*n个元素中只有一个,明显是1,其余的是0,这样的矩阵有m*n个1,这m*n个矩阵构成一组基2,任意m*n阶矩阵可由这m*n个矩阵线性表示(普通意义上的矩阵加法和数乘)所以求证所有m×n阶矩阵的集合

关于矩阵的对角化问题我想问的就是对于对称阵必然存在n个线性无关的特征向量,并且还是正交阵.那么如果我求出n个线性无关的特

你的第一个理解和第2个理解都是对的P正交化以后只是有P逆等于P的转置PAP逆还是等于对角阵的liuchuanren举的那个反例根本就是错误的{{13,28},{-6,-13}}.明显可以正交相似为对角

线性空间的证明检验集合(n阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘)是否构成实数域R上的线性空间

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩

谁会矩阵的题啊,设A为n阶对称矩阵,B为n阶反对陈矩阵.证明:1、B^2(B的平方)为对称矩阵;2、AB-BA为对称矩阵

1.(B^2)'=(B*B)'=B'*B'=(-B)*(-B)=B^22.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA(AB+BA)'=(AB)'+(BA)'

n阶实对称矩阵A满足A的100次方等于0,下列选项中不正确的是:A.A一定有三个线性无关的特征向量

这道题好玩.因为0一定是A的特征值,也就是说B是对的.那么D说“以上三个选项都不正确”,肯定是错了.感觉上A=0也是对的.而A不一定有三个线性无关的特征向量.比如说如果A就是2阶的零矩阵,那么只有两个