BC是圆O的直径,点A是圆o上一点,点P是圆O外一点,PB切圆o

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 03:59:14
BC是圆O的直径,点A是圆o上一点,点P是圆O外一点,PB切圆o
如图 AB是圆o的直径,PA垂直于圆O 所在的平面,C是圆O 上不同于A,B的任一点.求证

证明:连结AC∵AB是圆O的直径∴∠ACB=90°即BC⊥AC又∵PA⊥圆O所在平面,且BC在这个平面内∴PA⊥BC因此BC垂直于平面PAC中两条相交直线∴BC⊥平面PAC

已知,如图,AB是圆O的直径,C是圆O上一点,OD垂直BC于点D,过点C作圆O的切线,交OD的延长线于点E,连接BE

  (1)∵AD⊥BC,∴CD=BD,∴CE=BE,∵CO=BO,∴△OCE≌△OEB,∴∠OBE=∴BE与圆O相切.(2)连接BC,AB是直径,∠ACB=90°.sin∠ABC=

如图,AB为圆O的直径,BC切圆O于点B,AC切圆O于点P,E在BC上,且CE=BE.求证PE是圆O的切线.

所以角ABC=90度\x0d因为AB为圆O的直径\x0d所以角APB=角BPC=90度因为OP=OB所以角OPB=角ABP\x0d因为角BPC=90度,CE=BE所以PE=BE所以角BPE=角PBC\

如图,已知AC是圆O的直径,PA切圆O于点A,B是圆O上一点,PB=PA

(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2

如图,P是圆O外一点,PA切圆O于点A,AB是圆O的直径,BC//OP切交圆于点C,请准确判断直线PC与圆O是怎样的位置

连接AC,OC∵AB为⊙O直径∴AC⊥BC(严谨一些的话,要先∠ACB=90°再垂直)∵BC//OP∴OP⊥AC.(其实这里要写上∵BC//OP,∠BCA=90°,导出内错角也为90°,再OP⊥AC)

如图,AB是圆O的直径,BC是弦,PA切圆O于A.OP平行于BC,求证:PC是圆O的切线

证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C

如图,已知AB是圆O的直径,点C、D在圆O上,且AB=6,BC=3.

(1)因为AB是直径,所以角ACB是90度,又因为BC=1/2AB=3(直角边是斜边的一半),所以角BAC=30度sin30度=1/2,sin角BAC的值为1/2(2)因为OE垂直AC,O为AB中点,

三角形abc的顶点A B C 都在圆O上,AE是圆O的直径,AD是三角形abc的边BC上的高

连接EC,则:角ACE=90度=角ADB角B=角E所以:三角形ADB相似于三角形ACEAB/AE=AD/ACAB*AC=AE*AD

已知AB是圆O的直径,点C是半圆上的三等分点,求AC/BC的值?

连接OC,AC,BC...假设第一个三等分点为C,第二个三等分点为D∵C,D为半圆的三等分点∴CD∥AB 角COD=60°又∵OC=OD∴△OCD为等边三角形∴CD=OC=OA(半径相等)∴

已知AB是圆O的直径,点C是半圆上的三等分点,求AC/BC的值.

设AB=2a(a>0)连接CA,CB;∵AB是圆O的直径∴∠ACB=90°∵点C是半圆上的三等分点∴弧AC﹙或BC﹚=60°∴∠ABC﹙或∠BAC)=30°∴AC﹙或BC)=½AB=a,BC

如图,AB是圆O的直径,点D在圆O上,∠DAB=45°,BC平行AD,CD平行AB

(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π)分析:(1)直线与圆的位置关系无非是相切或不相切,可连接OD,证OD是否与CD垂直即可.(2)

AB是圆O的直径,点D在圆O上,BC为圆O切线,AD∥OC,求证:CD是圆O的切线.

连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB

AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上不同于A,B的任一点,求证:BC⊥平面PAC

∵ab是圆o的直径,且c是圆o上不同于a、b的任一点∴∠acb是直角∴ac⊥bc∵pa⊥圆o,且bc在圆o上∴pa⊥bc∵ac⊥bc,pa⊥bc∴bc⊥平面pac

点D是圆O的直径CA延长线上一点,点B在圆O上,且AB=AD=AO 若E是狐BC上一点,AE与BC相交于点F,△BEF的

因为AC是直径所以∠ABC=90度所以cos∠BFA=BF/AF所以BF/AF=2/3因为∠C=∠F.∠AFC=∠BFE所以△AFC∽△BFE所以S△BEF/S△ACF=4/9因为S△BEF=8所以S

AB是圆O的直径,PA是圆O的切线,过点B作BC‖OP交圆O于点C.连结AC

设PO交AC于D因为PA是圆O的切线所以PA⊥AB因为AB是直径所以AC⊥BC因为BC//OP所以PO⊥AC因为AB=2所以OA=1因为PA=√2所以PO=√3因为△AOD∽△POA所以可得OA/OP

如图,BC是圆O的直径,P是圆O上的点,A是弧BP的中点,AD⊥BC,垂足为D,PB分别与AD、AC相交于E、F

证明:(1)连AB,AP,PC.∵A是弧BP的中点∴弧AB=弧AP∴∠ACB=∠ABP(等弧所对圆周角相等)又∵BC是圆O的直径,∴∠BAC=90°AD⊥BC于D,∴∠BAD=∠ACB(同为∠ABC的

如图,BD是圆O的直径,E是圆O上的一点,直线AE交BD的延长线于点A,BC⊥AE于C,且∠CBE=∠DBE.(1)试说

连接OE,则有∠OEB=∠OBE,已知∠CBE=∠DBE,故∠OEB=∠CBE,得OE‖BC,∠OEA=90°.∵∠OEA=90°∴OE⊥AC又∵E是○O上的点,那么AC是切线.2)∵OE⊥AC∴AO