1/2! 2/3! n大于等于1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 01:13:24
当n=2时带入原式成立假设n=k时原式也成立(k≥2)则有k+f(1)+.+f(k-1)=kf(k)所以k+1+f(1)+.f(k-1)+f(k)=1+f(k)+kf(k)=(k+1)f(k+1)所以
Tn比较大.因为从n=4开始,Tn就比2.5大了(可以证明Tn是递增的数列).但是5n/(2n+1)始终小于2.5
证明:法1.用二项式展开因为2^N=(1+1)^N=C(N,0)+C(N,1)+C(N,2)+...+C(N,N-1)+C(N,N)当N>=3,有2^N=(1+1)^N>=C(N,0)+C(N,1)+
先看着图片先,可能不清晰.
n=3时,2^3=8>2*3+1,2的n次方大于2n+1成立设n≤k,k>3时成立则:2^(k+1)=2*2^k>2*(2k+1)=4k+2>2k+8>2(k+1)+1n=k+1时成立所以,2的n次方
根据二项式定理,有[1+(1/n)]^n=1+n*(1/n)+[n*(n-1)/(2!)]*[(1/n)^2]+...+[n*...*1/(n!)]*[((1/n)^n]=1+1+[n*(n-1)/(
解:1.当n=3时:2^3=8>2×3+1=7,结论成立2.假设当n=k(k≥3,k∈N)时结论也成立,即2^k>2k+13.当n=k+1时:2^(k+1)=2×2^k>2(2k+1)=4k+2(由归
采用数学归纳法证明3^n>(n+2)2^(n-1)(n>2)当n=2时,3^2=9(n+2)2^(n-1)=8,显然有3^n>(n+2)2^(n-1)假设当n=k时有3^k>(k+2)2^(k-1)当
(1)an=3a(n-1)-2an-1=3(a(n-1)-1)(an-1)/(a(n-1)-1)=3(an-1)/(a1-1)=3^(n-1)an=1+3^n(2)1/an=1/(1+3^n)1/a1
最后两位是03,那么乘2得06,两个相邻数相乘得06的只能是2,3;7,8.经计算得n的最小值为37
1!+2!+3!+4!=1+2+6+24=33n>4时,n!能被2,5整除,即n!个位数字为0,因此其和的个位数字为3.
根号下a的2n+1次方乘以b的4n+3次方=[a^(2n+1)*b^(4n+3)]^1/2=a^(n+1/2)*b^(2n+3/2)
可以假设:n大于等于0的时候,当n=0,3的0次=1,2n+1=1;当n=1,3的1次=3,2*1+1=3;当n=2,6,5;...n小于零3的n次都是大于0,2n+1就是都是小于0(负数)
当n=k时,有:(k)^(k+1)>(k+1)^k【n^(k+2)表示n的k+2次方】则当n=k+1时,(k+1)^(k+2)=[k^(k+1)]×[(k+1)^(k+2)]/[k^(k+1)]>[(
用归纳法证明:这题将问题一般化引入参数μ,证明对μ≥n≥3时,nμ^n>(μ+1)^n(1)当n=3时,3*μ^3>(μ+1)^3,成立(2)设n=k时,k*μ^k>(μ+1)^k当n=k+1时,(k
当n=4时左边=16>右边成立=13假设当n=k时,不等式成立,即:2^k>3n+1;当n=k+1时左边=2^(k+1)=2*2^k>2(3n+1)=6k+2右边=3k+4;左边-右边=3k-2;又因
an=sn-s(n-1)代入得Sn=2S(n-1)+2^n,即Sn/2^n=S(n-1)/2^(n-1)+1所以Sn=(n+1/2)*2^n,所以an=Sn-S(n-1)=n*2^n+2^(n-1).
(1)当n=2时,1/2^2=1/4=2)时不等时成立,那么,对于n=k+1,有1/2^2+a/3^2+……+1/k^2+1/(k+1)^2
证明:当n=1,2时,两式相等,当n>2时,用二项式展开,提出其中的相同项,即x^n+(1/x)^n则只需比较剩下部分,用数学归纳法就可证明了.
显然(n+1)(1/2)^n>0令f(x)=(x+1)*(1/2)xf(n)=(n+1)(1/2)^nf(n+1)=(n+2)(1/2)^(n+1)f(n+1)/f(n)=1/2*(n+2)/(n+1