a的行列式不等于0,则a的任意列向量线性无关,任意行向量线性无关

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 08:27:03
a的行列式不等于0,则a的任意列向量线性无关,任意行向量线性无关
如果矩阵A的行列式乘以矩阵B的行列式不等于0,能不能说明A和B的行列式都不等于零?

|A|,|B|是两个数,两个数的积不为0,这两个数当然都不为0所以|A|,|B|都不为0

求证明:若A可逆,则(A^-1)的行列式等于A的行列式求逆.

若A可逆,设A的逆矩阵为A^(-1)则根据逆矩阵定义有:AA^(-1)=A^(-1)A=E∵|AB|=|A||B|∴|A||A^(-1)|=|A^(-1)||A|=|E|=1从而|A^(-1)|=1/

线性代数问题,矩阵A可逆,则对任意不为零向量的x,Ax不等于0,如何证明?

A可逆,若Ax=0,两边左乘以A的逆矩阵,则x=0.所以只要x≠0,则Ax≠0.

若A~B,则A的行列式等于B的行列式.请问A~B是什么意思

“相似”的意思我在矩阵里看到的:对于同阶方阵A、B,若存在/P/(行列式P)不等于0使P^(-1)AP=B,则称A与B相似,记为AB

设n阶行列式D=a,且D的每行元素之和为b(b不等于0),则行列式D的第一列元素代数余子式之和等于多少.详

a/b将每一列的各元素(除去第一列)加到第一列上来,则第一列全为b提取b出来,则第一列全为1,记此时的行列式为E,则a=bIEI,∵行列式等于对应于它的任意一列各元素与其代数余子式的乘积之和∴IEI即

A为n阶方阵,A的行列式为d不等于0,则A的伴随矩阵的逆矩阵等于?

A/d再问:我也算的这么多再问:但答案不是这个再答:那是什么再问:后面还有个-3不知道怎么来的再答:矩阵-3?是不是答案错了再问:不知道,可能是吧,我到时问问老师再答:别忘了告诉我结果^O^再问:Ӧ�

A是n阶矩阵,A^2=A,A不等于E,证明:A的行列式等于0

因为A^2=A所以A(A-E)=0所以r(A)+r(A-E)=1所以r(A)再问:r(A)是什么,貌似不知道再答:r(A)是A的秩如果没学过秩,可用反证法若|A|≠0,则A可逆再由A^2=A等式两边左

设A是n阶矩阵,若Ax=b对任何b都有解,A的行列式不等于0 求证!

由已知,对b取εi=(0,...,1,...,0)^T,i=1,2,...,n方程组Ax=εi有解所以ε1,...,εn可由A的列向量组线性表示所以n

线性代数 证明题1.设n阶方阵A不等于O,且A的伴随矩阵=A的转置矩阵,求证A可逆.2.求证:若矩阵A的行列式=0,则A

1,2可由定理若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;其他情况r(A*)=0获证3可由AA*=(detA)E导出,将A按可逆不可逆分类讨论下即可

证明:A是n阶方阵,A不等于0,则存在一个非零矩阵B,使得AB=0的充要条件为A的行列式的值=0

反证法:若A的行列式不为零,则A的秩为n,即A满秩,A可逆,等式两边的左侧都乘以A的逆矩阵,得到B=0,矛盾,故A不可逆,极为A的行列式值为0.

设n阶矩阵A满足A方等于A,并且A不等于E,证明A的行列式等于0

AA=A=>AA-AE=O=>A(A-E)=O=>|A|*|A-E|=0但A≠E,所以|A|=0

线性代数,如果已知A不等于E,能推断出A-E的行列式不等于零吗?

显然不能例如把E的一个1变成0,把它记做A,E-A行列式为0

矩阵A为任意非零矩阵,矩阵A属于交换环G,如何推出A的行列式不等于零?

这里的Q是有理数域的意思第二题的解答也有问题,合理的做法是|A|=a^2-2b^2≠0(因为2^{1/2}不是有理数)总体来讲就是你看的材料质量太差,所以你没能看明白

如果矩阵A可逆,那么行列式A的值是不是一定不等于零?如果矩阵A不可逆,那么行列式A的值是不是一定等于零

两个都是充要条件如果矩阵A可逆,|A|不等于零如果矩阵A不可逆,|A|=0这个是线性代数的一个定理,证明我忘了

有关可逆矩阵的行列式请如果矩阵A为nxn可逆矩阵,那么是否一定有A的行列式不等于零?

若A为可逆阵,那么有A*A-1=E两边取行列式有|A*A-1|=|E|=1而左边有|A*A-1|=|A|*|A-1|=1≠0,所以|A|≠0证毕.

齐次线性方程组的系数行列式|A|=0,A为n*n的矩阵,而A中某元素代数余子式不等于0.写不开了.见补充

证:因为|A|=0,所以r(A)=n-1.故r(A)=n-1.所以齐次线性方程组AX=0的基础解系含n-r(A)=1个解向量.所以AX=0的任一个非零解都是它的基础解系.因为AA*=|A|E=0.所以

已知3阶方阵A的行列式|A|=a不等于0,则行列式|-2A|=

|-2A|=(-2)^3*a=-8a再问:矩阵A=211160为()定矩阵。103