A的特征值和A²特征值关系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:23:47
A的特征值和A²特征值关系
分块矩阵【A B ; B A】的Jordan标准型,与A和B的Jordan标准型有和关系?他们之间的特征值如何联系?

P=[II;-II]/sqrt(2)那么P*[AB;BA]*P^{-1}=P*[AB;BA]*P^T=[A+B0;0A-B]所以只要看A+B和A-B的Jordan型就可以了

设X是矩阵A的特征值,则A的逆的特征值?A的转置的特征值?

设a是A的一个特征向量,又X是A的特征值,则有:Aa=Xa,两边同时乘以A的逆矩阵,则:A^(-1)*Aa=A^(-1)*Xa,即a=A^(-1)*Xa,变换位置得:A^(-1)a=1/X*a,由此可

设三阶矩阵A,A-E和E+2A均不可逆,求A的特征值

由特征值的定义:|A-sE|=0的s为特征值不可逆等价于行列式等于0而|A-0E|=0,|A-1E|=0,|A-(-0.5)E|=0所以特征值为0,1,-0.5

线性代数矩阵的特征值的问题:如果矩阵A=B+C那么A的特征值是B的特征值加上C的特征值吗?

一般来说是不成立的.例如B=[0,1;0,0],C=[0,0;1,0],二者的两个特征值都是0.而A=B+C=[0,1;1,0],特征值是1和-1.再问:再问:再问:那这道题的解析里的那两句话是怎么得

试讨论可逆矩阵A 与A^-1的特征值与特征向量之间的关系

若t为A特征值,则倒数1/t为A逆阵的特征值;若a为A的对应特征值t的特征向量,则a也是A逆阵的对应特征值1/t的特征向量.反之亦然.供参考.

矩阵A的特征值是λ,特征向量是a,那么请问A的转置的特征值和特征向量是什么?

A转置的特征值与A的特征值是相同的.再问:对,那么特征向量呢?是不一定相同?还是有公式可以直接得到?再答:特征向量不一定相同

a是任意矩阵,aa^T型矩阵的特征值与a矩阵的特征值有什么关系?

记d为A的特征值,s为AA^t的特征值,那么必然有:min(s)

求出A的全部 特征值和特征向量

再问:谢谢您很感激噢

特征值和特征向量的关系

一般的矩阵没有这个性质只是属于不同的特征值的特征向量是线性无关的(而不是正交的)

已知A的特征值,怎么求A的多项式的特征值

f(x)是关于x的多项式,A的特征值为λ则f(A)对应的特征值为f(λ)

相似矩阵A和B有相同的特征值,特征向量与什么关系?

A与B相似所以存在一个矩阵P使得A=PBP^(-1)设α是A的属于λ的一个特征向量所以Aα=λα将A=PBP^(-1)带入PBP^(-1)α=λα得BP^(-1)α=λP^(-1)α所以x是B的属于λ

ATA的特征值与矩阵A特征值的关系

A^TA的特征值是A的奇异值的平方,与A的特征值没有很直接的联系

如果知道同阶矩阵A,B的特征值,A+B的特征值是A和B特征值的和吗?

若同阶矩阵AB的特征值之一分别为x,y那么A+B的特征值是不是有一个为x+y答:特征值的个数不一定只有一个,故一般说A的特征值之一为x,或x是A的一个特征值,或x是A的特征值之一.因此我将题目略作了修

矩阵A的伴随矩阵的值与A的特征值之间有什么关系?

因为A*A=IAIEIA*AI=IIAIEI=IAI^n,IA*IIAI=IAI^n,故IA*I=IAI^(n-1),若A能对角化,A的特征值为d1,d2,..,dn.则有IAI=d1d2,..,dn

线性代数 求特征值aRT 已知12是A的一个特征值 求a和其他两个特征值

因为12是A的特征值,所以|A-12E|=0.|A-12E|=-54-14-5-1-4a-8=-9(a+4)所以a=-4.所以A=74-147-1-4-44|A-λE|=7-λ4-147-λ-1-4-

A的特征值与A*的特征值之间有什么关系?

当A可逆时,若λ是A的特征值,α是A的属于特征值λ的特征向量,则|A|/λ是A*的特征值,α仍是A*的属于特征值|A|/λ的特征向量

特征值和可逆矩阵的关系

|A|=0说明A有特征值0,于是A的全部三个特征值为0,1,2则A^2的全部三个特征值为0,1,4,则-1不是A^2的特征值,于是|I+A^2|=-|-I-A^2|不等于零,于是A^2+I为可逆矩阵.