a是平面bcd外一点,△abd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:03:29
连接AM并延长交BC于M1,连接AN并延长交CD于N1,连接M1N1.因为M、N分别是ABC、ACD的重心,所以AM:AM1=2:3,AN:AN1=2:3,因此MN//M1N1,而M1N1在平面BCD
因为AD公用AB=AC所以直角三角形ABD全等于直角三角形ACD所以三角形DCD为等腰三角形.DB=CD则DE⊥BC由因为AD的垂影为DE所以AD⊥BC
设AC的中点为G,连结EG、FG.则EG、FG分别是ΔABC和ΔACD的中位线,就有:EG‖BC,EG=BC/2=AD/2,GF‖AD,GF=AD/2.由题设,EF=√2AD/2,在ΔEFG中,满足E
如图,如果有什么看不清的,可以百度HI我~
证明:如图,连结BM、BN,并延长分别交AD、DC于P,Q两点,连结PQ、MN,∵M,N分别是△ABD和△BCD的重心,∴P,Q分别是AD、DC的中点,且BMMP=BNNQ=2,∴MN∥PQ,又MN不
(1)证明:用反证法.设EF与BD不是异面直线,则EF与BD共面,从而DF与BE共面,即AD与BC共面,所以A、B、C、D在同一平面内,这与A是△BCD平面外的一点相矛盾.故直线EF与BD是异面直线.
先说一下思路:1、先说一下直线和平面平行的判定定理:*如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.2、连接AM、AN并延长,分别交BC、CD于点E、F.3、△AMN∽△A
sh首先重心是中线的交点,分中线的比为2∶1.取CD边上的中点F,连接BF,AF.在三角形ABF中由于比例关系线段MN∥AB,之后就好证了.
解题思路:立体几何解题过程:见附件最终答案:略
1、因为重心是中线的三等分点,BG和AF都是它中线的三分之二,按三角形的相似性可知道AB//FG且FG=(1/3)AB,同理可知道AB、BC、AC分别平行于FG、EF、EG &n
连接AE,CEAB=AD,E为BD中点AE垂直BDAC=AC,角ABC=角ADC=90度三角形ABC全等于三角形ADCBC=CDCE垂直BDCE交AE=E,CE,AC属于面AECBD垂直面AECBD属
证明:∵AB=AC,E是BC的中点,∴BC⊥AE, 在△ABD和△ACD中,∠ABD=∠ACD=90°,AB=AC,AD为公共边,∴△ABD≌△ACD,∴BD=DC.又∵E是BC
重心是中线的交点E和F就分别是BD、CD的中点咯且AM/ME=AN/NF=2/1MN=(1/2*2/3)BC=1/3BC应该是BC=a你写错了吧
证明:很容易,请先了解一个重心的性质,重心将中线分为了2:1两部分,所以取bd中点p,取cd中点q,连结ap、aq、pq,则pq//bc,am/mp=an/nq=2:1,所以mn//pq,再根据平行线
如图所示,由三角形重心的性质可得AMAE=23,∴S△MNPS△EFG=49,而S△EFGS△BCD=14,∴S△MNPS△BCD=19.∵S△BCD=9,∴△MNP的面积是1.故答案为:1.
解题思路:有问题请添加讨论解题过程:连接AM并延长与BC的交点就是BC中点P;连接AN并延长与CD的交点就是CD的中点Q因为:AM:MP=2:1;AN:NQ=2:1则:MN//PQ又:PQ在平面BCD
证明:∵AB⊥平面BCD∴AB⊥CD∵BD⊥CD∴CD⊥平面ABD【CD垂直平面ABD中两条相交线】∵CD∈平面ACD∴平面ACD⊥平面ABD
分别延长BM,BN交AD,CD于P,Q显然P,Q分别是AD,CD的中点由重心的性质知BM/MP=2/1=BN/NQ由平行线分线段成比例定理知PQ‖MN又MN不含于平面ACDPQ含于平面ACD故MN‖平
延长AM交BC于E,BE=CE,MN//EF,MN/EF=AM/AE=2/3,AE=2,BD=2EF=4