a大于0b大于等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 15:23:25
是的再问:a减b大于0,那么a大于b吗?a等于ba的平方等于b的平方吗?谢谢!
均值不等式1/a+1/b大于等于2*/(ab)^1/2,1/a+1/c大于等于2*/(ac)^1/2,1/b+1/c大于等于2*/(bc)^1/2相加即得.
1式先左右同时乘以a,得一元一次不等式,可以解除a大于等于3.2式左右同时乘以a,得二元一次不等式,由上式得出a大于等于3,可以取a等于3代入式子,得一个一元一次不等式,解出b大于等于1.5.分别取a
/>√a
证明:∵b>a+c∴b²>a²+2ac+c²两边同时减去4ac得b²-4ac>a²-2ac+c²=(a-c)²≥0∴b²
a=b=c=4带进去就不对
左边=(a+b+c)/(a+b)+(a+b+c)/(b+c)+(a+b+c)/(c+a)-3=0.5×(a+b+b+c+c+a)*[1/(a+b)+1/(b+c)+1/(c+a)]-3≥0.5×{3×
若a/b小于0,或无实数解(b=o),则ab小于0.
本题要针对(a+b)的正负,进行分类讨论.1)若a+b≥0,则原式=a-b+b+a=2a2)若a+
ab大于等于a+b+1即ab≥a+b+1即a+b+1≤ab≤【(a+b)/2】²即a+b+1≤【(a+b)/2】²令t=a+b,则t>0则t+1≤【t/2】²=1/4*t
∵恒有:(a-b)²≥0∴展开,两边再加4ab.可得:(a+b)²≥4ab>0∴[(a+b)/2]²≥ab>0两边取对数,可得:lg[(a+b)/2]²≥lg(
∵a^2+b^2≥2ab,b^2+c^2≥2bc,a^2+c^2≥2ac(b+c)/a+(c+a)/b+(a+b)/c=b/a+c/a+c/b+a/b+a/c+b/c=(b/a+a/b)+(c/a+a
a>0,b0
晕倒,这要是想求出准确数字,肯定还有其他条件追问:回答:根号2/2追问:.回答:后面直接平方,再开方,ok
这个题目可以直接把“均值不等式”当作已知的基本定理而直接证明.我这里给出更基本一些的方法,即假设我们干脆没听说过均值不等式.首先给出一个因式分解公式:(符号^表示乘方)x^3+y^3+z^3-3xyz
假设a=b=2,满足题目条件a>0,b>0,则a^3+b^2=8+4=12;a^2b+ab^2=8+8=16;所以a^3+b^2<a^2b+ab^2.所以,你的题目有问题.
解题思路:结合不等式的性质进行求解解题过程:解:∵b>0,∴-b<0又a<0∴a+(-b)<0∴a-b<0最终答案:略
a+1/a-2=(a^2-2a+1)a=(a-1)^2/a>=0,故a+1/a>=0(a+b)*(1/a+1/b)-4=((a+b)^2-4ab)/ab=(a^2+b^2+2ab-4ab)/ab=(a