a伴随的行列式等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:33:41
|(3A)^(-1)-2B|=|A^(-1)/3-2B|=|A*/(3|A|)-2A*|=|-4A*/3|=(-4/3)^4.|A*|=(256/81)*(1/2)^3=32/81
A/d再问:我也算的这么多再问:但答案不是这个再答:那是什么再问:后面还有个-3不知道怎么来的再答:矩阵-3?是不是答案错了再问:不知道,可能是吧,我到时问问老师再答:别忘了告诉我结果^O^再问:Ӧ�
\x0d\x0d\x0d去我空间里相册看看,还是有些有用的东东的.
A*这个记号不是很规范的记号,我用adj(A)来写首先考虑A可逆的情况Aadj(A)=det(A)I两边取行列式得det(A)det(adj(A))=det(A)^n所以det(adj(A))=det
不相等,|A^n|=|A|^n而|A*|=|A|^(n-1),后者证明过程如图.经济数学团队帮你解答,请及时采纳.谢谢!再问:为什么|A|^n=|A^n|?再答:
直接打格式不好编辑,我手写了答案,你看图片吧.再插一句:给矩阵乘一个系数相当于给每个元素都乘以这个系数,而给行列式乘一个系数则是给一行或是一列乘以这个系数.
AA*=|A|E|AA*|=|A|^n再问:�Ҿ�����Ϊʲô|A|��|A*|=|A|^n再答:���|A|�ᵽE����ȥ����ᷢ�ִ����ϵ����µ�һ������|A|,����|A|
AA*=det(A)E则det(A)det(A*)=(det(A))^n故det(A*)=(det(A))^(n-1)
知识点:|A*|=|A|^(n-1),其中n是A的阶.所以|A*|=|A根据伴随矩阵的性质可有:AA*=|A|E(E为单位矩阵)则两边求行列式有:
a的秩等于n-1,伴随矩阵秩等于1,所以不为0.伴随矩阵行列式为0再问:再问:???再答:你的写法错误,|A|=0.A是没有逆矩阵的,所有元素都为0的矩阵才是零矩阵再问:谢谢!!!
经济数学团队帮你解答,有不清楚请追问.请及时评价.
由AA^T=2E得|A|^2=2^4=4^2又因为|A|
证明:假设|A*|≠0由A*可逆因为AA*=|A|E=0等式两边右乘(A*)^-1则得A=0故A*=0所以|A*|=0矛盾.
首先,当n>1,关于伴随矩阵的秩,有如下结果:若r(A)=n,则r(A*)=n;若r(A)=n-1,则r(A*)=1;若r(A)证明:当r(A)=n,有A可逆,|A|≠0.于是由A*A=|A|·E可得
看这个证明里的(2)再问:能把照片发到邮箱里吗?我是手机党,看不清楚,下载了几次都没成功!谢谢。再答:已发
应该是|A*|=|A|^(n-1)讨论一下,若r(A)=n,则AA*=|A|E,故|A||A*|=|A|^n,即|A*|=|A|^(n-1).若r(A)
按下图可以严格证明这个性质.请采纳,谢谢!