A为二阶矩阵,求AX=0的解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:43:08
因为R(A)=2所以AX=0的基础解系含3-2=1个向量因为A的每行元素之和都是零所以A(1,1,...,1)^T=0即(1,1,...,1)^T是AX=0的解所以AX=0的通解为c(1,1,.,1)
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
基础解系含有解向量的个数等于n-R(A)=5-2=3个
(1)A-->r2+2r1,r3+3r1,r2*(1/7)12-3-207-10014-20r3-2r212-3-201-1/700000r1-2r210-19/7-201-1/700000基础解系为
设λ是A的特征值,则λ^2-λ是A^2-A的特征值而A^2-A=0所以λ^2-λ=0所以λ(λ-1)=0所以λ=1或λ=0因为A可逆,所以A的特征值不等于0故A的特征值为1.
A=1111243135244635r2-2r1,r3-3r1,r4-4r11111021-102-1102-11-->1111021-100-220000所以r(A)=3所以AX=0的基础解系含n-
A=(a1,...,an)列满秩,即A的列向量组a1,...,an线性无关所以,若x1a1+...+xnan=0,则必有x1=...=xn=0即Ax=0只有零解
将题补全.设A为n阶矩阵,秩(A)=n-1,X1,X2是齐次线性方程组Ax=0的两个不同的解,则Ax=0的通解是kX1或kX2(要求X1或X2不等于零,即不能是零解),其中k是任意数.
由AX-A=3X得(A-3E)X=A(A-3E,A)=-13-123-12-20210040043经初等行变换化为10013/23/4010013/4001-3-3/25/2所以X=13/23/401
A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX
1、因为A*A'('表示转置)为n*n的矩阵,而一个矩阵的秩必≤它的行数或列数,所以r(A*A')≤n可以直接得到.2、需要说明的是,r(n)中的n是什么?你可能看错了,一个数是不必算秩的(一个非0数
当m>n时,r(A)≤n,仅有0解是r(A)=n当m再问:就是说不是看m或者n,看方程组和未知数的个数的比较再答:看系数矩阵的秩和未知量个数,也即矩阵的列数的比较。
只能知道0是A的一个特征值,另外三个是求不出来的
肯定啥,这一看就是矩阵论没学好,A为四阶方阵,而秩为2,小于4,说明A的行列式的值为0,本来求特征值就有|A-kE|=0,求出特征值k,显然这里k=0是特征方程的解,另外,一个矩阵代表了一个空间,假设
因为A(b1,b2...bn)=0得R(A)+R(B)0得到R(A)
为n-1,说明解为n-n+1=1个Ax=0的通解可以表示为km或者kn再问:那答案为何写成k(m-n)呢再答:答案蛋疼三种方法都可以你写成k(m+n)也对注:如果m,n是非齐次方程组的解的话,那答案就
因为A是正交矩阵所以A的行(列)向量都是单位向量,且A^-1=A^T而a33=-1,所以a31=a32=a13=a23=0所以方程组的解x=A^-1b=A^Tb=(0,0,-1)^T.