A为二阶矩阵,A的五次方为零矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:12:51
A为二阶矩阵,A的五次方为零矩阵
为什么n阶实对称矩阵A为正定矩阵,则其对角线上的元素都大于零

取x=(0,...,1,...,0)^T,第i个分量为1,其余为0则x^TAx=aii>0.即得A的主对角线上元素都大于0.再问:x^TAx为什么大于0啊再答:因为A正定

n阶矩阵A是n阶单位矩阵里的零全变成a.若矩阵A的秩为n-1,则a必为多少?

|A|=[1+(n-1)a](1-a)^(n-1)因为r(A)=n-1所以|A|=0所以a=1或a=1/(1-n)但a=1时r(A)=1所以a=1/(1-n)再问:第一步是怎么来的?再答:1.����

已知矩阵A为可逆二阶矩阵,且A^2=A,则A的特征值为?

设λ是A的特征值,则λ^2-λ是A^2-A的特征值而A^2-A=0所以λ^2-λ=0所以λ(λ-1)=0所以λ=1或λ=0因为A可逆,所以A的特征值不等于0故A的特征值为1.

已知A的行列式为零,证明A的伴随矩阵的行列式为零.

经济数学团队帮你解答,有不清楚请追问.请及时评价.

设四阶矩阵A 的元素全为1,则 A 的非零特征值为

4det[1-a,1,1,1;1,1-a,1,1;1,1,1-a,1;1,1,1,1-a]=det[-a,0,0,a;0,-a,0,a;0,0,-a,a;1,1,1,1-a;]=a^3*det[-1,

两个非零矩阵A,B的乘积为零矩阵,且|B|=0 那么|A|一定为零么?

一定为零因为AB=0说明B的全部列向量是AX=0的解,而B非零说明AX=0有非零解,从而秩(A)

矩阵A为任意非零矩阵,矩阵A属于交换环G,如何推出A的行列式不等于零?

这里的Q是有理数域的意思第二题的解答也有问题,合理的做法是|A|=a^2-2b^2≠0(因为2^{1/2}不是有理数)总体来讲就是你看的材料质量太差,所以你没能看明白

矩阵A乘矩阵B等于零矩阵,矩阵A可逆,是否可以判断矩阵B为零矩阵,理由?

可以AB=0等式两边左乘A^-1即得B=0再问:您好,那如果A不可逆,要如何处理?再答:A不可逆,B就不一定等于0再问:对于这一结论,只能举例吗,能否通过公式说明B不一定等于0?再答:矩阵的乘法有零因

如何证明矩阵A与矩阵A的转置的乘积为0;和矩阵A为零矩阵,互为充要条件

若A'A=B=0,则看B的对角线元素b{ii}=求和{j从1到n}aij^2,平方和=0,每一项必须是0,于是aij=0,故A=0.反之,显然成立.

a,b均为n阶方阵,b为幂零矩阵a可逆矩阵,且ab可交换,证明a与a+b有相同的特征多项式

ab=ba可以得到a和b可以同时上三角化,然后就显然了再问:能不能说得再详细一点,高代是自学的,没上过课,学得不太好再答:先去看这个问题http://zhidao.baidu.com/question

①若a为正数,且(x-y)的平方分之x+y-a的值为零,试比较x的五次方+y的五次方与x的四次方y+xy的四次方的大小.

x+y=a或X-Y=0X^5+Y^5-X^4Y-XY^4=(X-Y)X^4+Y^4(Y-X)=(X-Y)(X^4-Y^4)=(X-Y)^2(X+Y)(X^2+Y^2)>0所以X^5+Y^5大于X^4Y

线性代数,证明矩阵的秩一种定义:矩阵A的不为零的子式的最高阶数,叫做矩阵A的秩

课本上有定理证明.其实只要理解了规律,这个定理会很容易记住的.对秩的理解也会加深,对线代整个体系的掌握也会提升.