A为n阶矩阵,B为m阶矩阵,求|0 A;B 0|的行列式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:31:59
A为n阶矩阵,B为m阶矩阵,求|0 A;B 0|的行列式
矩阵题目:设A为m*n矩阵,而B C分别是m阶和n阶可逆矩阵,0为n*m零矩阵 证明A,B,C

题目只让你证明,你把两个矩阵乘起来验证一下就行了.验证它们的乘积等于单位阵.如图(点击可放大):

设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

A为n阶矩阵,B为m阶矩阵,C为m×n矩阵,D为n×m矩阵,其中A和B可逆;证明:|A||D-CA^-1B|=|D||A

是A,D可逆吧设H=ABCD一方面有E0-CA^-1E乘H=AB0D-CA^-1B所以|H|=|A||D-CA^-1B|.另一方面H乘E0-D^-1CE=A-BD^-1CB0D所以|H|=|D||A-

设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵

终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是

设分块矩阵D=(C A B 0),其中A为n阶可逆矩阵,B为m阶可逆矩阵.求|D|以及D的逆

行列式可由Laplace展开定理,按第n+1,n+2,...,n+m行展开|D|=|A||B|(-1)^tt=n+1,n+2,...,n+m+1+2+...+m=mn+2(1+2+..+m)所以|D|

高数线性代数设A为n阶可逆矩阵,B为任一n*m矩阵,如何证明

初等行变换相当于在矩阵的左边乘一系列初等矩阵初等矩阵的乘积是可逆矩阵P(A,B)=(E,X)PA=EPB=X得P=A^-1,X=A^-1B

设A为mxn矩阵,B为nxm矩阵,m>n,证明AB不是可逆矩阵?

经济数学团队帮你解答,有不清楚请追问.请及时评价.

分块矩阵求行列式的值A为n阶矩阵,B为m阶矩阵,且|A|=a,|B|=b,分块矩阵C=(OABO),则|C|=?答案(-

两行交换一次行列式换号第m行做相邻交换到最后一行(做了n次),第m-1行做相邻交换换到倒数第二行(做了n次),……第一行做相邻交换到倒数第m行(做了n次)|C|=(-1)^mn|(BO,OA)|

A为n阶矩阵 B=AA^T 求B是对称矩阵`

因为B^T=(AA^T)^T=(A^T)^TA^T=AA^T=B所以B是对称矩阵

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

求证!A为n*m实矩阵,证A^TA为m阶正定矩阵

用定义很明显A^TA半正定,但是不可能证明正定,除非A满秩且m

设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵

首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定

A,B均为n阶矩阵,B B为正交矩阵,则|A|^2=

A、B相似,说明存在可逆的P,A=PBP逆B正交,说明B'=B逆,B'表示转置所以|A|²=|A²|=|AA|=|PB(P逆P)BP逆|=|P||P逆||B||B|=|P|*1/|

设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是

只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������޹صģ�B���

分块矩阵 设A为n阶非奇异矩阵,a为n×1矩阵,b为常数

PQ=A+aa^Ta+ba-a^TA*A+|A|a^T-a^TA*a+|A|b=A+aa^Ta+ba-|A|a^T+|A|a^T-a^TA*a+|A|b=A+aa^T(b+1)a0-a^TA*a+|A

A为n阶非奇异矩阵,B为n*m矩阵,证明r(AB)=r(A)

这是个错误结论试想,B是零矩阵,怎么会有R(AB)=R(A)!可逆矩阵才不改变乘积矩阵的秩