a为n阶实对称方阵 且正定 则 合同于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:16:15
实对称矩阵必可以相似对角化,正定,那么所有特征值大于0,所以和单位矩阵合同,再问:能不能给个证明过程?考试时用!可逆矩阵p能表达出来吗?再答:不会吧?这怎么能写出具体的啊。矩阵都不知道,什么样子也不知
正定矩阵的概念来源于正定二次型即X^TAX>0(X≠0时)所以A是对称的.线性代数考虑的范围为实数,实二次型所以有时默认正定矩阵是实对称矩阵再问:那么正定和实对称矩阵有什么关系呢?比如充要、充分、必要
(BтAB)т=(B)т(A)т(Bт)т=BтAтB=BтAB,不就是对称矩阵么?再问:思路是什么啊。为什么一开始要求BтAB的转置呢。你的证明我看懂了。再答:什么是对称矩阵?!对称矩阵不就是证明转
证明某阵A为对称阵,只需要有AT=A(BTAB)T=BTAT(BT)T=BTATB又A为对称阵AT=A代入得BTATB=BTAB所以BTAB为对称阵
直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.
不一定,不妨假设A和C都是正定的实对称矩阵,则A和C都合同与单位矩阵E,令B=D=E,这样的A,B,C,D是满足条件的,现在的问题是AC是否合同于BD=E,也就是AC是否也是正定矩阵,这是不一定的,因
因为A^2=A所以A的特征值只能是0和1由于r(A)=r所以A的特征值为1,...,1(r个),0,...,0(n-r个)--这里用到A可对角化所以2E-A的特征值为1,...,1(r个),2,...
[(B)TAB]T=(B)TATB=(B)TAB证毕!
证明:AA^T=E|A||A^T|=|E||A|^2=1|A|=±1.得证性质1:|A|=|A^T|性质2:若方阵AB=C有|A||B|=|C|
1.A,B均可逆不能保证A,B可交换(AB=BA)2.最好能经过变换后能提出含λ的因子5-λ-13-15-λ-33-33-λr1+r24-λ4-λ0-15-λ-33-33-λc2-c14-λ00-16
去掉实对称也是成立的.任一矩阵都有实相合标准型,即对角线上只是1或-1或0.只要实相合标准型相同,两个矩阵必相合,反之,若不同必不想和.所以本题就是问n阶矩阵有多少相合类.这个你自己算下,在n个空位不
不需要实对称的条件,一般的方阵都可以做相抵标准型A=P*diag{I_r,0}*Q,那么取B=Q^{-1}*diag{I_r,0}*P^{-1}即可
1.设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
5.B14.A,B,C
n阶方阵A与实对称矩阵B相似,则A与B的秩相等但是B的秩不一定等于n如B=000010002实对称矩阵B的秩等于2,则A的秩的等于2
因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立
不一定