A为3阶方阵且1A1为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:48:05
A为3阶方阵且1A1为
已知A是n阶方阵,a1,a2,a3为n维列向量,且a1≠0,Aa1=a1,Aa2=a1+a2,Aa3= a2+a3,求证

a1≠0,{a1}线性无关.①证明{a1,a2}线性无关:假如{a1,a2}线性相关.a2=ka1.Aa2=Aka1=kAa1=ka1=a1+a2=(1+k)a1,a1≠0,k=1+k,不可.∴{a1

设A为3阶方阵,把A按列分块为A=(a1,a2,a3),|A|=-3其中ai(i=1,2,3)是A的第i列,则|a1,a

|a1,a3-2a1,4a2|(把第一列扩大2倍加到第二列)=|a1,a3,4a2|(第三列提取公因子4)=4|a1,a3,a2|(交换第二三列要变号)=-4|a1,a2,a3|=-4*(-3)=12

线性代数证明题设a1,a2,a3为n阶方阵的3个特征向量,且对应的特征值互不相同,记β=a1+a2+a3.证明:β,Aβ

设a1,a2,a3对应的特征值分别是x1,x2,x3β=a1+a2+a3.Aβ=A(a1+a2+a3)=x1a1+x2a2+x3a3(A^2)β=(A^2)(a1+a2+a3)=(x1^2)a1+(x

设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同的解向量,则AX=0的通解为?A.ka1

(A)=n-1说明解空间的秩为1所以找一个非零解就行.显然a1-a2是一个非零解.所以通解为C(a1-a2)

线性代数选择 设A为3阶方阵,且R(A)=1,则( )

选D这个只要自己写一下就行了,既然r(A)=1,那原方阵A就相抵于3阶方阵{100;000;000},除了(1,1)位置元素为1,其余元素全是0——这是可以把A通过初等变换得到的.然后A中每一个元素a

设n阶方阵A的两个特征值λ1,λ2所对应的特征向量分别为a1与a2,且λ1=-λ2不等于0,判断a1,a2是否A的特征

若a1+a2是A的属于特征值λ的特征向量则A(a1+a2)=λ(a1+a2)∴Aa1+Aa2=λ(a1+a2)∴λ1a1+λ2a2=λa1+λa2∴(λ1-λ)a1+(λ2-λ)a2=0.因为A的属于

已知A是3阶方阵,且A的行列式为-2,求|(2A)^-1+3/4A*|,亲们

A^(-1)=A*/|A|=-A*/2得A*=-2A^(-1)|(2A)^-1+3/4A*|=|A^(-1)/2-3/4·2A^(-1)|=|A^(-1)/2-3/2A^(-1)|=|-A^(-1)/

已知A为3阶方阵,且 |A |=1/2.则 |(2A)* |=

知识点:1.(kA)*=k^(n-1)A*2.|kA|=k^n|A|3.|A*|=|A|^(n-1)|(2A)*|=|2^(n-1)A*|=2^[n(n-1)]|A*|=2^[n(n-1)]|A|^(

设A为3阶方阵.且|A|=3,将A按列分块为(A1,A2,A3),计算|A3,-2A2,3A1|与|A2,3A3-2A1

|A3,-2A2,3A1|=-2×3|A3,A2,A1|=-6|A3,A2,A1|=-6×(-1)|A1,A2,A3|=6×|A|=6×3=18|A2,3A3-2A1,A1|=|A2,3A3,A1|-

设A,B为N阶方阵,E为单位矩阵,a1,a2,.an,为B的N个特征值,且存在可逆矩阵P使B=PAP^(-1)-p^(-

因为[(P^2)]^(-1)[PAP^(-1)]P^2=P^(-1)AP所以PAP^(-1)与P^(-1)AP相似故它们有相同的迹(即对角线元素之和)所以a1+a2+.+an=tr(PAP^(-1)-

设A为3阶方阵,且|A^-1|=2/5,则|(2A)^-1-A^*|=

昨天在的怎么没收到你这个问题A*=|A|A^-1=5/2A^-1|(2A)^-1-A*|=|1/2A^-1-5/2A^-1|=|-2A^-1|=(-2)^3|A^-1|=-8*2/5=-16/5.

高代题,设四阶方阵A=(2A1,3A2,4A3,A4),B=(A1,A2,A3,A5)其中Ai均为4×1矩阵,且detA

det(A-B)=det(A1,2A2,3A3,A4-A5)=det(A1,2A2,3A3,A4)+det(A1,2A2,3A3,-A5)=2*3det(A1,A2,A3,A4)-2*3det(A1,

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

设A为3阶方阵,A*为伴随矩阵,丨A1=1/8,则|((1/3A)^(-1)-8A*丨=____

可以用行列式性质如图计算,答案是64.经济数学团队帮你解答,请及时采纳.

A为三阶方阵,A=(A1,A2,A3)

A1,A2,A3是矩阵A的3个列向量,关系其实你已经写出来了,就是A=(A1,A2,A3)或者你也可以写成A=(A1,O,O)+(O,A2,O)+(0,0,A3)|3A1,A2,3A3|为什么可以把两