A为3阶方阵且1A1为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:48:05
|b|=|a1+3a2,a2,a3|=|a1,a2,a3|=|A|=2选(C).
a1≠0,{a1}线性无关.①证明{a1,a2}线性无关:假如{a1,a2}线性相关.a2=ka1.Aa2=Aka1=kAa1=ka1=a1+a2=(1+k)a1,a1≠0,k=1+k,不可.∴{a1
|a1,a3-2a1,4a2|(把第一列扩大2倍加到第二列)=|a1,a3,4a2|(第三列提取公因子4)=4|a1,a3,a2|(交换第二三列要变号)=-4|a1,a2,a3|=-4*(-3)=12
设a1,a2,a3对应的特征值分别是x1,x2,x3β=a1+a2+a3.Aβ=A(a1+a2+a3)=x1a1+x2a2+x3a3(A^2)β=(A^2)(a1+a2+a3)=(x1^2)a1+(x
(A)=n-1说明解空间的秩为1所以找一个非零解就行.显然a1-a2是一个非零解.所以通解为C(a1-a2)
选D这个只要自己写一下就行了,既然r(A)=1,那原方阵A就相抵于3阶方阵{100;000;000},除了(1,1)位置元素为1,其余元素全是0——这是可以把A通过初等变换得到的.然后A中每一个元素a
若a1+a2是A的属于特征值λ的特征向量则A(a1+a2)=λ(a1+a2)∴Aa1+Aa2=λ(a1+a2)∴λ1a1+λ2a2=λa1+λa2∴(λ1-λ)a1+(λ2-λ)a2=0.因为A的属于
|a1+a2,2b,2r|=|a1,2b,2r|+|a2,2b,2r|=4*2-4=4
A^(-1)=A*/|A|=-A*/2得A*=-2A^(-1)|(2A)^-1+3/4A*|=|A^(-1)/2-3/4·2A^(-1)|=|A^(-1)/2-3/2A^(-1)|=|-A^(-1)/
知识点:1.(kA)*=k^(n-1)A*2.|kA|=k^n|A|3.|A*|=|A|^(n-1)|(2A)*|=|2^(n-1)A*|=2^[n(n-1)]|A*|=2^[n(n-1)]|A|^(
|A3,-2A2,3A1|=-2×3|A3,A2,A1|=-6|A3,A2,A1|=-6×(-1)|A1,A2,A3|=6×|A|=6×3=18|A2,3A3-2A1,A1|=|A2,3A3,A1|-
|A3,A2,4A1|=-|4A1,A2,A3|=-4|A1,A2,A3|=16
因为[(P^2)]^(-1)[PAP^(-1)]P^2=P^(-1)AP所以PAP^(-1)与P^(-1)AP相似故它们有相同的迹(即对角线元素之和)所以a1+a2+.+an=tr(PAP^(-1)-
昨天在的怎么没收到你这个问题A*=|A|A^-1=5/2A^-1|(2A)^-1-A*|=|1/2A^-1-5/2A^-1|=|-2A^-1|=(-2)^3|A^-1|=-8*2/5=-16/5.
det(A-B)=det(A1,2A2,3A3,A4-A5)=det(A1,2A2,3A3,A4)+det(A1,2A2,3A3,-A5)=2*3det(A1,A2,A3,A4)-2*3det(A1,
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
5.B14.A,B,C
原式=(-2)³×detA=-8×(1/2)=-4
可以用行列式性质如图计算,答案是64.经济数学团队帮你解答,请及时采纳.
A1,A2,A3是矩阵A的3个列向量,关系其实你已经写出来了,就是A=(A1,A2,A3)或者你也可以写成A=(A1,O,O)+(O,A2,O)+(0,0,A3)|3A1,A2,3A3|为什么可以把两