arcsin导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:49:50
y'=1/√(1-2x-1)*[√(2x+1)]'=1/√(-2x)*1/[2√(2x+1)]*2=1/√(-4x²-2x)
(arcsin(x/2)'=1/√[1-(x/2)²]×(x/2)'=1/√[1-(x/2)²]×1/2=1/√(4-x²)
隐函数求导y=arcsin(y/x)^1/2反三角定义化简整理siny=(y/x)^1/2x=y/sin^2yy=x*sin^2y左右对x求导y'=sin^2y+(sin^2y)'x=sin^2y+2
y=arcsin(2x+3),先对外层函数arcsin(2x+3)求导数,再乘以内层函数2x+3的导数y'=1/√[1-(2x+3)²]*(2x+3)'=1/√(1-4x²-12x
y=[arcsin√(x-1)]²y'=2•arcsin√(x-1)•[arcsin√(x-1)]'=2arcsin√(x-1)•1/√{1-[√(x-1
y=arcsin((1-x^2)^0.5)y'=(1-(1-x^2))^-(1/2)*(-2x)=(-2x)/((1-(1-x^2))^0.5)=(-2x)/((1-1+x^2)^0.5)=(-2x)
这是一个复合函数求导的题,复合函数的求法是f(g(x))导数=f'(g(x))*g'(x).y=arcsinx的导数=1/根号(1-x^2)这是公式.y=根号x的导数=1/(2*根号x)也是公式推导的
按复合导数来arcsinx的导数为1除根号下1-x^2y'=e^arcsin√x*1/√(1-x)=e^arcsin√x/√(1-x)
根据导数的定义ARCSINX的导数={ARCSIN(X+a)-ARCSINX}/a(a趋向于0)现在令ARCSIN(X+a)=pARCSINX=q那么有X+a=sinpX=sinq那么ARCSINX的
y'=(1/根号(1-x的平方/4))*(1/2)
令sinx=t.arcsint的导数是1/(1-t^2)^1/2=1/|cost|再乘以sinx的导数cosx所以答案是cosx/|cosx|
令u=xy,则z对x的偏导就变为(dz/du)*(偏u/偏x),然后按这样的顺序算就行了,同理,对y也一样,不知道这样说你明不明白
y=arcsin(sinx)=x-1≤x≤1y'=1-1≤x≤1但为什么他们的导数不同呢?----------------没有不同.再答:当-π/2
不懂请追问希望能帮到你,望采纳!再问:能不能化简一下再答:已经很简单了,不用化简啦。。。再答:ok
y=arcsinuu=v^(1/2)v=x/(1+x)y'=1/(1-u^2)u'=1/2*v^(-1/2)v'=1/(1+x)^2y'=1/√(x+x^2)
1/根号(1-x^2/a^2)再问:对吗?是不是还要对(x/a)求导啊,复合求导不太会再答:不好意思,应该还要乘以(1/a)^2,我原来以为能约掉的。。
63.8437122
这是复合函数,y=arcsinu,u=x/2.由“复合函数求导法则”可得y'=[1/√(1-u²)]×(1/2)=(1/2)×1/√[1-(x/2)²]=1/√(4-x²
根据导数的定义ARCSINX的导数={ARCSIN(X+a)-ARCSINX}/a(a趋向于0)现在令ARCSIN(X+a)=pARCSINX=q那么有X+a=sinpX=sinq那么ARCSINX的