arcsinx的n阶导数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 05:21:49
这题有点技巧,略解供参考
(arccosx)'=-(arcsinx)'f(x)=arccosx+arcsinxf'(x)=(arccosx)'+(arcsinx)'=0即f(x)恒为常数实际上arccosx+arcsinx=π
提示:用到二项展开式(1+x)^a=1+a*x+a*(a-1)/2!*x^2+a*(a-1)*(a-2)/3!*x^3+...+a*(a-1)*(a-2)*...(a-n+1)/n!*x^n+...=
(x^2-1)^n的n阶导数先看这个:(x-1)^n=x^n-nx^(n-1)+n(n-1)/2*x^(n-2)-.+(组合Cnk)*x^(n-k)(-1)^k+.+(-1)^n再看这个:(x&sup
如果学过幂级数,就用幂级数的知识解决.下面给个不用幂级数的方法.y'=1/根号(1-x^2),因此(y')^2*(1-x^2)=1,求导得2y'y''(1-x^2)+(y')^2(-2x)=0,由于y
导数平方后结果为:1/(1-x^2)=1/(1-x)*(1+x);进行裂项:=1/2*(1/1-x+1/1+x);然后相信你已经能看出来,问题转化为求1/1-x和1/1+x的n-2阶导数了,这个都是有
...添个负号.-1/根号(1-x^2)再问:arccosx的导数是多少。。?-arcsinx和arccosx的导数是一样的?如果你经过思考了给出过程。谢谢。如果没只是随便一说,请回答前动下脑子再答:
y'=2arcsinx/√(1-x²)(1-x²)y'=2arcsinx=2√y即(1-x²)y'²=4y两边取n阶导数,并用n阶导数的莱布尼茨公式可得结论再问
因为x=siny所以cosy=根号下1减去x平方于是(arcsinx)'=1除以根号下1减x2
y=arctanxy'=1/(1+x²)y''=-2x/(1+x²)²y'''=(6x²-2)/(x²+1)³y=arcsinxy'=1/(
求这些头都大了,求出y=arcsinx的导数,然后直接用泰勒公式就行了,你是不是觉得求y=arcsinx的导数心烦
因y=arcsinx(-1
y=(sinx)^4+(cosx)^4=[(sinx)^2+(cosx)^2]^2-2(sinx)^2(cosx)^2=1-(1/2)(sin2x)^2=1-(1/4)(1-cos4x)=3/4+(1
这个是函数积的求导(fg)'=f'g+fg'对y'cosy求导,f=y',g=cosy,f'=y'',g'=-siny*y'带入就得到了(y'cosy)'=y''cosy-siny*y'*y'再问:就
大致有两个方法一个是由泰勒展开一个是直接求n阶当然可以借助一些特殊的展开式比如sinxcosxIn(x+1)等等y的一阶导数(1-x^2)^(-1/2)再套用(1+x)^a典型式展开后再积一次分就可以
这是大学高等代数的内容,不知道你看的明白不,高中这些内容是不会考的再问:还有其它反三角函数的导数的证明没,还有在(-π/2,π/2)时,cosy>0,是y值是正的所有大于0、若是cosx则是小于0,是
f'(x)=2(arcsinx)/√(1-x^2)f''(x)=2/(1-x^2)+2(arcsinx)*(1-x^2)^(-3/2)f'''(x)=4x/(1-x^2)^2+2/(1-x^2)^2+
一阶导1/√(1-X^2)然后继续将分母看成整体ww=√(1-X^2),二阶导成为1/w^2*(dw/dx)依次进行求导,将w带进去,化成完全是x的式子三阶导数可以此类推.
y=1/arcsinx1/y=arcsinxsin(1/y)=xcos(1/y)(-1/y^2)y'=1y'=-(1/arcsinx)^2/cos(arc(sinx))=-1/[arcsinx)^2√
(arcsinx)'=1/√(1-x^2)y=(arcsinx)^2y'=2arcsinx/√(1-x^2)y''=[2/√(1-x^2)*√(1-x^2)-2arcsinx*(-x/√(1-x^2)