感知 如图①,点M是正方形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:50:47
感知 如图①,点M是正方形
如图,正方形ABCD的边长为2,M是BC的中点,将正方形折叠,使点A与点M重合,折痕为EF,求EF和AE的长

设AM与EF的交点为O因为∠EAO=∠MAB∠AOE=∠ABM=90°所以△AOE相似于△ANM所以AE:AM=AO:AB因为AM=√5,AO=AM/2=√5/2所以AE=AM×AO÷AB=√5×√5

如图,正方形ABCD的边长为2,M是BC的中点,将正方形折叠,使点A和点M重合,折痕为EF,求EF和AE的长.

AE=1.25EF=根号5求AE先做个辅助线连接EM,设AM和EF的交点为O.△AOE完全等同于△MOEAE=ME设AE长度为x用勾股定理得(2-x)²+1²=x²得出x

如图,ABCD是正方形,M,N分别是AB,BC中点,CM,DN交于点P,求证AP=AB

证明:延长CM,交DA的延长线于点G∵BM=CN,BC=CD,∠B=∠NCD=90°∴△BCM≌△CND∴∠BCM=∠CDP∴∠DCP+∠CDP=∠DCP+∠BCM=90°∴∠CPD=90°∵MA=M

如图,正方形ABCD的边长是2,M是BC中点,将顶点A翻至与点M 重合,得痕迹EF,求AE长?过程!...

设EF与AM的交点为O则EF垂直平分AM∵AB=2,BM=1∴AM=根号5∴AO=(根号5)/2易证△AOE∽△ABM∴AO/AB=AE/AM∴AE=5/4

如图,正方形ABCD的边长为6m,点E是AB边上的动点四边形EFGH是正方形,则正方形EFGH面积最小值为

对照你的图形阅读下列内容:设AE=x,则BE=(6-X)BF=XS(EFGH)=EF²=X²+(6-X)²=2X²-12X+36这是一个开口向上的抛物线,当X=

如图① 已知四边形ABCD是正方形 当点M在边AB上 点N在边BC的延长线上 AM=CN连接MN 取线段MN的中点G 连

①DG⊥MG.DG=MG.证明:连DN,∵AD=CD,AM=CN,∠DAM=∠DCN,∴△DAM≅△DCN(SAS),∴∠ADM=∠CDN,DM=DN,∵∠ADN+∠CDM=∠CDN+∠C

如图,已知点O是正方形ABCD的重心

这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相

如图,在正方体ABCD_A1B1C1D1中,P,Q分别是AB,B1C1上的任意点,N是PQ的中点,M是正方形A1B的中点

连接BQ,取BQ中点G,L连接NG、MG,由于M中心,G也是BQ中点,则MG必然平行面B1D1则形成三角形PBQ∵N和G分别是PQ和BQ中点∴NG//PB,PB在面B1D1上,则NG//面B1D1又有

如图在正方形abcd中,点m是对角线bd上的一点,过点m作me垂直cd交bc于点e,作mf平行bc交cd于点f,求证am

证明:连接CM因为ME平行CDMF平行BC所以四边形MECF是平行四边形因为四边形ABCD是正方形所以角ADM=角CDM=45度AD=DC角ECF=90度所以四边形MECF是矩形所以MC=EF因为DM

如图,在正方形ABCD中,点M是对角线BD上的一点,过点M作 ME平行CD交BC于点E,作MF平行BC于点F.求证AM=

证明:连接MC,易知四边形MECF是矩,所以EF=MC因A,C点关于DB对称,所以AM=MC即AM=MC=EF也可证AB=BC,

如图,正方形ABCD的边长是4,点M在CD上,且DM=3,P是AC上一动点,求PD+PM的最小值

∵点D关于直线AC的对称点是点B,∴要使PD+PM的值最小,连接BM,交AC于点P,点P就是满足要求的点.此时,PD+PM=BP+PM=BM,在Rt△BCM中,BM=√(16+1)=√(17).PD+

如图,点O是正方形ABCD的对称中心,

解对称理由如下连接AC,∵O是正方形ABCD的对称中心∴OA=OC,AB∥CD∴∠OAH=∠OCM∵∠AOH=∠COM∴△AOH≌△COM(ASA)∴OH=OM∴△AO

正方形ABCD,点M是边BC上的一点,点N是AB上一点,如图18,若DN⊥AM,则DN=AM

第一个图呢.第二个,过p向ab做垂线交ab于e.三角形pen全等于三角形abm.所以en=bm=1/3ab,ae=an-en=1/6ab=dp,pc=5/6ab,pc/dp=5:1再问:再答:设AM交

如图,正方形ABCD的边长是2,M是AD中点,点E从点A出发,沿AB运动到点B停止,连接EM并延长交射线CD与点F,过M

1、△ECF的面积=三角形DMF的面积+四边形CDME的面积=三角形AEM的面积+四边形CDME的面积=四边形AECD的面积=(AE+CD)*AD/2,得y=(x+2)*2/2=x+22、P的运动路线

如图,AG、BE交与点C,四边形ABCD、CGEF都是正方形,点M是AE中点,求证:MD=MF

延长DM到N,使MN=MD,连接FD、FN、EN,延长EN与DC延长线交于点H.∵MA=ME,∠AMD=∠EMN,MD=MN,∴△AMD≌△EMN,∴∠DAM=∠MEN,AD=NE.又∵正方形ABCD

如图,正方形ABCD中,点M是边BC上一点(异于点B、C),AM的垂直平分线

答:过点F作FG⊥AB交AB于点G所以:GF//AD,GF==AD1)因为:∠FGE=∠ABM=90°因为:EF是AM的垂直平分线所以:∠GEF=90°-∠BAM因为:∠BMA=90°-∠BAM所以:

如图1,点M、N分别是正方形ABCD的边AB、AD的中点,连接CN、DM.

证明:(1)CN=DM,CN⊥DM,∵点M、N分别是正方形ABCD的边AB、AD的中点,∴AM=DN在△AMD和△DNC中,AM=DN∠A=∠CDNAD=DC,∴△AMD≌△DNC(SAS),∴CN=