an收敛,an绝对值大于bn绝对值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:52:39
用比较判别法证明.经济数学团队帮你解答.请及时评价.
(an+bn)^2
算术几何均值不等式:|an|/n
如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.
这题明显少条件,如果bn是单调的就可以了.否则结论不成立.反例:an=(-1)^n/n^(1/2),级数an收敛.bn=(-1)^n/n^(1/2),数列bn收敛于0,但级数anbn=级数1/n是发散
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn
这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,
不一定An=1/nBn=nAn*Bn收敛An=n/(n+1)Bn=n+2An*Bn发散
a1=3*1-20=-17San=(-17+3n-20)*n/2=(3n-37)*n/2an=3n-20>0n>=7即n=7时,an>0a6=3*6-20=-2a7=3*7-20=1S6=(-17-2
如果{an+bn}收敛因{an}也收敛对任何e都有N1,N2使k>N1就有|(ak+bk)-L|N2有|(ak)-A|N1,N2中较大者,有|bk-(L-A)|=|(ak+bk)-L+(ak-A)|无
(n+1)=a(n+1)+1=[2an+1]+1=2an+2=2(an+1)=2bn,所以{bn}是公比为2的等比数列.b1=a1+1=2,所以bn=b1*q^(n-1)=2*2^(n-1)=2^n.
An,Bn,An+1成等差A1=1.B1=2所以A2=3又Bn,An+1,Bn+1成等比所以B2=9/2所以A3=6,B3=8A4=10,B4=25/2所以,An=n(n-1)/2,Bn=(n+1)^
由于有0
An=nBn-nBn-1,数列收敛必有极限.对于任意给定的ε1,存在N1使得,A为极限Bn=A+α;对于任意给定的ε2,存在N2使得Bn-1=A+β取N=max{N1,N2}使得An=n{α+(-β)
再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再
第一题有不错的解答了...主要写了你补充的题
这叫夹逼法;a>=b且b>=a则a=