an前n项和sn=-1 2n^2 kn,sn最大值为8
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 19:05:09
答案为ASn=((a1+an)/2)*nan=a1+(n-1)d根据上式得出:Sn=(2a1+(n-1)d)*n/2=a1*n+n方*d/2-n*d/2limSn/n方=lim(2a1*n+n方*d-
Sn+1/(2n+1)-Sn/(2n-1)=1Sn/(2n-1)=S1+n-1→Sn=(S1+n-1)(2n-1)→Sn=n(2n-1)an=4n-31/√an=2/2√(4n-3)>2/(√4n-3
S1=A1=2A1-3故A1=3而An=Sn-S(n-1)=(2An-3n)-[2A(n-1)-3(n-1)]=2An-2A(n-1)-3故An=2A(n-1)+3故An+3=2[A(n-1)+3]即
(1)Sn-1=(n-1)^2-7(n-1)-8=n^2-9nan=Sn-Sn-1=2n-8(2)an是a1=-6,公差为2的等差数列∵当n<4时an<0∴Tn=-Sn=-na1-1/2n(n-1)d
an=sn-s(n-1)这个公式挺常用的,用这个直接就解出来了所以an=3n-2n^2-[3(n-1)-2(n-1)^2]右边化简,得an=3n-2n^2-[3n-3-2(n^2-2n+1)]=3n-
我就说第二问吧.若{an}中存在三项,它们可以构成等差数列,则有2an=(an-1)+(an+1)即2*(3*2^n-3)=3*2^(n+1)-3+3*2^(n-1)-3,3*2^(n+1)-6=3*
错位相减求和.
sn=n^2ans(n-1)=(n-1)^2*a(n-1)sn-s(n-1)=n^2an-(n-1)^2*a(n-1)=an(n^2-1)an=(n-1)^2a(n-1)(n+1)an=(n-1)a(
Sn=12n-n^2Snmax=36Sn=12n-n^2Sn-1=12(n-1)-(n-1)^2两式相减an=12-2n+1=-2n+13数列{|An|}的前n项和Tn当n6时Tn=36+1+3+5+
Sn=12-n²an=Sn-S(n-1)=13-2n是递减数列令an6.5,即前6项为正,以后为负!故前n项和如下:(1)n≤6时Sn=12n-n²(2)n≥7时|a1+|a2|+|a
(Ⅰ)证明:把n=1代入Sn=2an+3n-12,得a1=2a1+3-12,解得a1=9,当n≥2时,an=Sn-Sn-1=(2an+3n-12)-[2an-1+3(n-1)-12]=2an-2an-
an+1=2Snan-1=2Sn-1an+1-an-1=2anan=(-1)^(n+1)Sn=1/2+1/2*(-1)^(n+1)看懂了给我满意,没有别的要求,
A(n+1)=S(n+1)-Sn=2(n+1)^2+3(n+1)+2-2n^2-3n-2=2n^2+4n+2+3n+3-2n^2-3n=4n+5An=5+4(n-1)
【方法1:强行展开a(n)表达式】1+2+……+n=n(n+1)/21^2+2^2+……+n^2=n(n+1)(2n+1)/61^3+2^3+……+n^3=n^2(n+1)^2/41^4+2^4+……
Sn=-2n^2-nS(n-1)=-2(n-1)^2-(n-1)an=Sn-S(n-1)=-2n^2-n+2(n-1)^2+(n-1)=2[(n-1)^2-n^2]-1=-4n+1a1=-3an是以-
答案:(n^-2n+3)*2^(n+1)-6证明可用数学归纳法
解题思路:裂项相消法解题过程:an=1/n(n+2)=1/2n-1/2(n+2)sn=1/2-1/2*3+1/4-1/2*4+1/2*3-1/2*5..........+1/2(n-2)-1/2(n)
n≥2时,a(n)=S(n)-S(n-1)=(2n²+3n)-[2(n-1)²+3(n-1)]=4n+1当n=1时,a1=S1=2×1+3×1=5,也适合上面式子∴a(n)=4n+
(1)令n=1,得a1=-1.Sn=2an+n,S(n+1)=2a(n+1)+n+1.两式相减,得a(n+1)=2a(n+1)-2an+1.整理得a(n+1)-1=2(an-1),a1-1=-2.综上
解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程: