总体X服从参数为2的泊松分布,X1.X2.X3是X的一个样本
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:01:18
依题意可以得到λ=3,;所以E(X)=D(X)=3;而D(X)=E(X^2)-E(X)^2=3;所以E(X^2)=E(X)^2+D(X)=12;
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
X服从参数为λ的泊松分布,EX=λ.把EX换成一阶样本矩Xˉ,即得矩估计量为λ^=Xˉ.
相互独立且服从参数为λ1,λ2的泊松分布
Yn的极限应该是6吧.这里的Yn其实就是样本的二阶原点矩,记为A2.其一阶原点矩为1/n(X1+X2+……+Xn),记为A1.其二阶中心矩记为S^2.它们之间的关系为A2-A1^2=S^2.又因为X服
概率论我已经忘光光了……
样本均值的方差等于总体方差除样本数20.总体方差=参数10
首先写出似然函数LL=∏p(xi)=∏{[(λ^xi)/(xi!)]·e^(-λ)}=e^(-nλ)·∏{[(λ^xi)/(xi!)]=e^(-nλ)·λ^(∑xi)·∏1/(xi!)然后对似然函数取
求证什么?看不懂你的意思 你把题目打清楚点,我看看 就算这个统计量的方差是否是λ这里有
X~π(2)E(x)=2D(X)=2D(X)=E(X^2)-[E(X)]^22=E(X^2)-4E(X^2)=6
lambda
P(1),所以E(X)=1,D(X)=1,又因D(X)=E(X²)-E²(X),所以E(X²)=D(X)+E²(X)=2
因为$X\simP(2)$,所以,$\E{X}=2$,$\Var{X}=2$.所以$\E{X^2}=\Var{X}+\E{X}^2=2+2^2=6$,建议好好看看书上的随机变量数字特征这一章,因为$\
参数为2的泊松分布,其期望就等于参数2即,E(X)=2∴ E(2X)=2E(X)=4……【期望的性质E(CX)=CE(X)】再问:
P(X=2)=[9e^(-3)]/2
泊松分布的期望Ex=λ=4,Dx=λ=4PS:泊松分布式(λ^k)/k!*e(-λ)
楼上的答案似乎不对P(X>1)=1-P(X=1)-P(X=0)=1-e^(-1)-e^(-1)-=1-2/e=0.26424
π(a)π(b)π(a)π(b)为柏松分布则P{X=k}=(a^k)e^(-a)/k!P{Y=m}=(b^m)e^(-b)/m!k,m=0,1,2.因为X,Y相互独立则他们的联合分布P{X=k,Y=m