An*n与Bn*n满足AB=A-B,证明A,B相似

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:42:20
An*n与Bn*n满足AB=A-B,证明A,B相似
设a1=2,a2=4,数列{bn}满足:bn=a(n+1)-an,b(n+1)=2bn+2.

答案啊这样的,我用照片给你发过去

已知数列an和bn满足a1=2,(an)-1=an[a(n+1)-1],bn=an-1,n属于N*

由bn=an-1与an-1=an[(an+1)-1]得bn=[bn+1]*(bn+1)所以bn/[bn+1]=(bn+1)所以[bn+1]/bn=1/(bn+1)即1/bn+1=(bn+1)所以{1/

已知数列{an}{bn}满足a1=1,a2=3,b(n+1)/bn=2,bn=a(n+1)-an,(n∈正整数),求数列

(n+1)/bn=2∴bn=b1×2^(n-1)b1=a2-a1=3-1=2∴bn=2^n∴a(n+1)-an=2^n∴a2-a1=2a3-a2=2^2a4-a3=2^3……an-a(n-1)=2^(

急 设A1=2,A2=4,数列Bn满足:Bn=A(n+1)-An,B(n+1)=2Bn +2

设A1=2A2=4数列Bn满足:B(n)=A(n+1)-A(n)①B(n+1)=2B(n)+2②B(n+1)=2B(n)+2===>[B(n+1)+2]=2[B(n)+2]可见B(n)+2是公比q=2

急 设A1=2,A2=4,数列BN满足:Bn=A(n+1)-An,B(n+1)=2Bn+2

2B(n+1)-Bn=2Bn+2-Bn=Bn+2B(n+1)+k=2(Bn+k)k=2所以Bn+2是以B1+2=4为首项2为公比的等比数列(Bn+2)/[B(n-1)+2]=2(n>1)A(n+1)-

已知数列an,bn满足a1=1,a2=3,(b(n)+1)/bn=2,bn=a(n+1)-an,(n∈正整数)

你应该是题目打错了,(b(n)+1)/bn=2,这个条件应该是b(n+1)/bn=2吧因为如果是你所说的bn将恒等于1等于1不要紧,关键是这样的话b1=a2-a1=2且b1=1矛盾如果是我所说条件的话

已知数列(An)中,A1=1/3,AnA(n-1)=A(n-1)-An(n>=2),数列Bn满足Bn=1/An

由AnA(n-1)=A(n-1)-An两边同时除以AnA(n-1),便得到1/An-1/A(n-1)=1,所以B1=3,Bn-B(n-1)=1,于是Bn=n+2.所以An=1/(n+2)则An/n=1

已知数列{an}满足a1=3,且a(n+1)-3an=3的n次方(n属于N*).数列{bn}满足

mark,求真相再问:;(2)设Sn=a1/3+a2/4+a3/5+…+an/(n+2),求满足不等式1/128

已知数列{an}的前n项和Sn=3×(3/2)^(n-1)-1,数列{bn}满足bn=a(n+1)/log3/2(an+

(1)a1=S1=3-1=2n>1时,an=Sn-S(n-1)=3*(3/2)^(n-2)*(3/2-1)=(3/2)^(n-1)n=1不符合此式,故an=2,n=1an=(3/2)^(n-1),n>

数列与不等式已知数列{an}是等差数列an=-2n+24,数列bn满足an=2log以a为底数,真数是bn,求使得bn>

这个题目可用倒推法解.首先,要使BN>1,那么LOG(AN)>1/2,换句话说也就是AN>10根据AN=-2N+24得,N

数列{an}的前n项的和Sn=n2-10n(n属于N*),数列{bn}满足bn=(an+1)/an(n属于N*),(1)

(1)Sn=n^2-10nan=Sn-S(n-1)=(2n-1)-10=2n-11=>{an}是等差娄列(2)bn=(an+1)/an=(2n-10)/(2n-11)maxbn=b1=8/9minbn

已知数列an满足a1=5/6,a(n+1)=1/3an+(1/2)^(n+1),n属于N*,数列bn满足bn=a(n+1

(1)bn=a(n+1)-1/2an,b(n+1)=a(n+2)-1/2a(n+1)sob(n+1)/bn=……将b(n+1)和bn中的a(n+2)a(n+1)和an全部化为an,可得b(n+1)/b

已知正项数列{an},{bn}满足:对任意正整数n,都有an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+

1、an,bn,a(n+1),所以,2bn=an+a(n+1)推出,2(bn+1)=a(n+1)+a(n+2)bn,a(n+1),b(n+1),所以,a(n+1)^2=bn*b(n+1),推出,a(n

数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证

证明:a(n+2)=[an+a(n+1)]/2a(n+2)-a(n+1)=-[a(n+1)-an]/2,即b(n+1)=-bn/2,b(n+1)/bn=-1/2,b1=a2-a1=1-0=1所以bn是

已知数列{an}满足:a1=1,a2=a(a>0),数列{bn}满足:bn=anan+2(n∈N*)

(1)∵{an}是等差数列,a1=1,a2=a(a>0),∴an=1+(n-1)(a-1).又b3=45,∴a3a5=45,即(2a-1)(4a-3)=45,解得a=2或a=-74(舍去),…(5分)

已知数列{an},如果数列{bn}满足b1=a1,bn=an+a(n-1)则称数列{bn}是数列{an}的生成数列

d(n)=2^n+n,p(1)=d(1)=2^1+1=3,p(n+1)=d(n+1)+d(n)=2^(n+1)+(n+1)+2^n+n=3*2^n+2n+1,L(2n-1)=d(2n-1)=2^(2n

已知数列{An}与{Bn}满足:A1=λ,A(n+1)=2/3An+n-4,Bn=(-1)^n*(An-3n+21),其

1、证明:a1=λ,a2=(2/3)a1+1-4=2λ/3-3,a3=(2/3)a2+2-4=4λ/9-4.若λ=0,a1=0,显然{an}不是等比数列;若λ≠0,则a2/a1=2/3-3/λ,a3/

已知数列{an}满足an+Sn=n,数列{bn}满足b1=a1,且bn=an-a(n-1),(n≥2),试求数列{bn}

an+Sn=n,a(n-1)+S(n-1)=n-1,前式减后式得:an-a(n-1)+an=1,2an-a(n-1)=1;2(an-1)=a(n-1)-1,(an-1)/[a(n-1)-1]=1/2,

已知数列an,bn,cn满足[a(n+1)-an][b(n+1)-bn]=cn

(1)a(n+1)-an=(n+1+2013)-(n+2013)=1∴b(n+1)-bn=cn/[a(n+1)-an]=cn=2^n+n∴bn-b(n-1)=2^(n-1)+n-1...b2-b1=2

设A1=2,A2=4,数列{Bn}满足:Bn=A(n+1) –An,B(n+1)=2Bn+2.

(1)B(n+1)=2B(n)+2=>B(n+1)+2=2(B(n)+2)所以:B(n)+2是等比数列公差为2,首项B1+2=4(2)B(n)=A(n+1)-A(n)B(n-1)=A(n)-A(n-1