an sn=An2 bn c nbn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:57:59
an sn=An2 bn c nbn
数列{an}中,a1=1,当n>1时,2Sn^2=2anSn-an,求通项an

当n>1时,an=sn-sn-1代入化简得:1/Sn-1/Sn-1=2所以:1/Sn=2n-1所以:Sn=1/(2n-1)当n>1时,an=sn-sn-1=-2/[(2n-1)(2n-3)]当n=1时

数列{an}中,a1=1,当n>1时2Sn²=2anSn-an,求通项an

2Sn²=2anSn-an,知an=Sn-S(n-1)代换后化简可得(过程不难但打起来很闹心……)1/Sn-1/S(n-1)=2故而1/Sn的通项公式为1/Sn=2n-1(1/S1=1),即

已知数列的前N项和为SN,A1=2,2sn的平方=2ansn-an(n≥2)求an和sn

因为S(n+1)-S(n)=A(n+1),根据题意有:2S(n+1)^2=2A(n+1)S(n+1)-A(n+1),将上式代入此式得:2S(n+1)^2=2[S(n+1)-S(n)]S(n+1)-S(

已知数列{an}中a1=1且n大于1时,2sn的平方=2ansn-an求an

2sn^2=2ansn-an2sn^2=2[sn-s(n-1)]sn-[sn-s(n-1)]2sn^2=2sn^2-2sns(n-1)-sn+s(n-1)2sns(n-1)+sn-s(n-1)=01/

=

错了.倒数第二行.结果是:0=0不可以消除(a-b)0不能作分母!太简单了!回答完毕.祝天天快乐,跪谢恩赐!

已知数列{an}中,a1=1,Sn为数列{an}的前n项和,且2an÷(anSn-Sn²)=1(n≥2)

已知:数列{an}中,a1=1,Sn为数列{an}的前n项和,且2an/(anSn-Sn²)=1,(n≥2);(1).证明数列{1/Sn}是等差数列;(2).求数列{an}的通项公式.(1)

数列{an}首项为1,有关系2Sn^2=2anSn-an(n≥2且n∈N*) 求证数列{1/Sn}是等差数列 求{an}

太简单了.2(S_n)^2=2a_nS_n-a_n=>2S_n(S_n-a_n)=-a_n=>2S_n*S_{n-1}=-a_n2S_n*S_{n-1}=-(S_n-S_{n-1})2=-1/S_{n

设数列{an}中,a1=1,且n大于1时,2Sn^2=2anSn—an求an

an=sn-s(n-1),2sn^2=2(sn-sn-1)sn-sn+s(n-1)=2sn^2-2s(n-1)sn-sn+s(n-1)2sns(n-1)=s(n-1)-sn2=1/sn-1/s(n-1

已知数列{an}的前n项之和Sn与an之间满足2Sn^2=2anSn-an (n>=2),且a1=2

1.证:n≥2时,2Sn²=2anSn-an=2[Sn-S(n-1)]Sn-[Sn-S(n-1)]整理,得S(n-1)-Sn=2SnS(n-1)等式两边同除以SnS(n-1)1/Sn-1/S

高中数列综合题数列an首项是1 当n大于等于2时 前n项和Sn与通项an满足条件:2Sn平方=2anSn-an(n属于N

解:(1)由于2Sn平方=2anSn-an又:an=Sn-S(n-1)则:2Sn平方=2[Sn-S(n-1)]Sn-[Sn-S(n-1)]2Sn平方=2Sn平方-2SnS(n-1)-Sn+S(n-1)

已知数列{an}中,a1=2,Sn为数列{an}的前n项和,且有关系式2Sn的平方=2anSn-an(n大于等于2),求

2Sn的平方=2anSn-an2Sn(Sn-an)=-an2SnS(n-1)=S(n-1)-Sn1/Sn-1/Sn-1=2{1/Sn}等差数列公差2首项1/21/Sn=1/2+2(n-1)=[4n-3

- = 、、、、

解题思路:列出不等式解答解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq

====

解题思路:根据三角形中位线平行于底边且等于底边的一半,得DE//=FG解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.p

设数列{an}的前n项和为Sn,且对任意的自然数n都有(Sn-1)^2=anSn

n=1时,(s1-1)^2=s1*s1即-2s1+1=0解得s1=1/2n=2时,(s2-1)^2=(s2-s1)*s2解得:s2=2/3n=3时,(s3-1)^2=(s3-s2)*s3解得:s3=3

已知数列 {an} 中,a1=1,且当n大于等于 2时,前n项和Sn与第n项an有如下关系:2(Sn)^2=2anSn-

2(S_n)^2=2a_nS_n-a_n=>2S_n(S_n-a_n)=-a_n=>2S_n*S_{n-1}=-a_n2S_n*S_{n-1}=-(S_n-S_{n-1})2=-1/S_{n-1}+1

已知数列{an}的前n项和为Sn,且满足a1=1,2an/(anSn-Sn^2)=1(n大于等于2)

由题意知:2an/[anSn-(Sn)²]=1(n>1)则:(Sn)²-anSn+2an=0(n>1)又因为:an=Sn-S(n-1)(n>1)所以:(Sn)²-[Sn-

已知数列{an}中,an>0且an2-2anSn+1=0,其中Sn为数列{an}的前n项和.

证明:(1)∵an2-2anSn+1=0,an=Sn-Sn-1(n≥2)∴(Sn-Sn-1)2-2(Sn-Sn-1)Sn+1=0⇒Sn2-Sn-12=1故{Sn2}成等差数列.(2)∵a12-2a12