An Bn=n 2n-1 则a10 b13

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:12:48
An Bn=n 2n-1 则a10 b13
数列an,bn满足anbn=1,an=n²+3n+2,则bn的前十项之和是?

n=1/an=1/(n^2+3n+2)=1/[(n+1)(n+2)]=1/(n+1)-1/(n+2)S10=b1+b2+...+b10=1/2-1/3+1/3-1/4+...+1/11-1/12=1/

高中数学数列〔简单〕An=2^(n-1)a1=2.bn=2n-1求tn=a1b1+a2b2.+anbn打错了.an=2^

因an=2^n,bn=2n-1所以anbn=(2n-1)2^n所以tn=a1b1+a2b2.+anbn=1*2+3*2^2+5*2^3+.+(2n-3)2^(n-1)+(2n-1)2^n两边乘以2得2

数列{an} ,{bn}满足anbn = 1,an = n2 + 3n + 2,则{bn}的前十项的和为

n=1/(n2+3n+2)=1/((n+1)(n+2))S10=1/(2*3)+1/(3*4).+1/(11*12)=1/2-1/3+1/3-.+1/11-1/12=1/2-1/12=5/12

数列an,bn满足anbn=1,an=n^2+3n+2,则bn的前n项之和为

an=(n+1)(n+2)anbn=1bn=1/an=1/[(n+1)(n+2)]=[(n+2)-(n+1)]/[(n+1)(n+2)]=(n+2)/[(n+1)(n+2)]-(n+1)/[(n+1)

数列{an},{bn}满足anbn=1,an=n*n(n的平方)+3n+2,则{bn}的前10项之和为()

an=n^2+3n+2=(n+1)(n+2)bn=1/[(n+1)(n+2)]=1/(n+1)-1/(n+2)S10=b1+b2+..+b10=(1/2-1/3)+(1/3-1/4)+..+(1/11

已知数列{an}是首项为1公差为正的等差数列,数列{bn}是首项为1的等比数列,设Cn=anbn(n∈N*),且数列{c

(1)设数列{an}的公差为d,数列{bn}的公比为q,则由题意知a1b1=1(a1+d)(b1q) =4(a1+2d)(b1q2) =12 ,因为数列{an}各项为正数

等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n3n+1,则anbn=(  )

∵anbn=2an2bn=a1+a2n−1b1+b2n−1=(2n−1)(a1+a2n−1) 2(2n−1)(b1+b2n−1) 2=s2n−1T2n−1∴anbn=2(2n−1)

等差an等比bn,a1=b1=1,a2=b2,a4=b3求anbn和Sn

1)∵a2=b2∴1+d=1×q∵a4=b4∴1+3d=1×q^3组合成方程组后把d=q-1带入1+3d=q^3q^3-3q+2=0q^3-3q+3-1=0q^3-1-3(q-1)=0(q-1)(q^

等差数列anbn中a1=36.b1=64,a100+b100=100,则数列an+bn的前200项和为

an=a1+(n-1)dbn=b1+(n-1)Da1=36.b1=64,a100+b100=100所以d+D=0an的等差为d.则bn的等差为-d数列an+bn是等差为0的等差数列100*200=20

等差数列{an},an=2n-1,等比数列{bn},bn=2n-1,求{anbn}的前n项和.

令Tn为{anbn}的前n项和,那么:Tn=a1b1+a2b2+…+anbn=1×20+3×21+5×22+…+(2n-1)•2n-12Tn=1×21+3×22+5×23+…(2n-1)•2n∴Tn=

已知:an=3n-1,bn=2^n,求数列{anbn}的前n项和

cn=anbn=(3n-1)*2^nSn=2*2^1+5*2^2+……+(3n-1)*2^n2Sn=2*2^2+……+(3n-4)*2^n+(3n-1)*2^(n+1)相减:Sn=(3n-1)*2^(

对于每个正自然数n,抛物线Y=(n^2+n)X^2-(2n+1)X+1与X轴交与An,Bn两点,以绝对值(AnBn)表示

(n^2+n)x^2-(2n+1)x+1=0由根与系数的关系x1+x2=(2n+1)/(n^2+n)x1x2=1/(n^2+n)|AnBn|=|x1-x2|=√(x1-x2)^2=√[(x1+x2)^

已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且AnBn=7n+45n+3,则使得anbn为整数的正整数

由等差数列的性质和求和公式可得:anbn=2an2bn=a1+a2n−1b1+b2n−1=(2n−1)(a1+a2n−1)2(2n−1)(b1+b2n−1)2=A2n−1B2n−1=7(2n−1)+4

已知数列{an}的前n项和Sn=2^n-1,若bn=n.求数列{anbn}的前n项和Tn

因为Sn=2^n-1所以S(n-1)=2^(n-1)-1所以an=Sn-S(n-1)=2^(n-1)(n>=2)因为S1=a1=2^1-1=1=2^0所以an=2^(n-1)(n>=2)因为bn=n所

若两个等差数列{an}和{bn}的前n项和分别是Sn和Tn,已知SnTn=n2n+1,则a7b7等于(  )

∵SnTn=n2n+1,∴a7b7=2a72b7=132(a1+a13)132(b1+b13)=S13T13=132×13+1=1327,故选:C.

数列{an}的通项公式是an=2n2n+1(n∈N*),那么an与an+1的大小关系是(  )

∵数列{an}的通项公式是an=2n2n+1=2n+1−12n+1=1-12n+1,(n∈N*),显然当n增大时,an的值增大,故数列{an}是递增数列,故有an<an+1,故选B.