an 2=绝对值an 1-an
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:25:52
解题思路:第一问的简单方法没想出,想到的是“先猜想结论,再用数学归纳法进行证明”(但不是证明的猜想的这个结论,而是由猜想的结论先求出an的通项公式,用数学归纳法证明an的通项公式正确,从而猜想的结论正
因为a1=3多次运用迭代,可得an=an-12=an-24=…=a12n-1=32n-1,故答案为:32n−1
利用不动点,设x=x^2/(2x-5),求出x=5,再构造bn=(an)-5,代入求出1/bn
由于a1=-2,an+1=1−an1+an∴a2=1+a11−a1=−13,a3=1+a21−a2=12,a4=1+a31−a3=3,a5=1+a41−a4=−2=a1∴数列{an}以4为周期的数列∴
因为an+1=2an2+an,所以1an+1-1an=12∵a1=1,∴1a1=1∴{1an}是首项为1,公差为12的等差数列∴1an=1+(n-1)×12=n+12,∴an=2n+1故答案为:2n+
A可逆,故由AA*=det(A)E知A*可逆,因此题目给出的的n-r个向量是A*的后n-r列,是线性无关的,只要证明他们是第一个方程组的解即可.由AA*=det(A)E知,A的第i(i=1,2..,r
∵在数列{an}中,a1=1,an+1=an2-1(n≥1),∴a2=a21-1=0,同理可得a3=-1,a4=0,a5=-1.∴a1+a2+a3+a4+a5=-1.故选:A.
解题思路:本题考查了通项公式的应用,考查了推理能力与计算能力,属于中档题.解题过程:
Sn=a1+a2+…+an=2n-1a1=S1=1n>1时,an=Sn-S(n-1)=2n-1-2(n-1)+1=2a12+a22+…+an2=1+4+4+4+------+4=4n-3
(1)证明:若an+1=an,即2an1+an=an,解得an=0或1.从而an=an-1=…a2=a1=0或1,与题设a1>0,a1≠1相矛盾,故an+1≠an成立.(2)由a1=12,得到a2=2
第二问没看懂,是1/a(n+2)还是1/(2+an)再问:后面一个,谢谢再答:实在不好意思,今天有点累了,明天再帮你解答第二问
∵数列{an}为等差数列,∴2an=an-1+an+1,又an-1-an2+an+1=0,∴an(2-an)=0,∵an≠0,∴an=2,又S2n-1=(2n−1)(a1+a2n−1) 2=
a1=10^2=10^(2^1)a2=a1^2=10^4=10^(2^2)a3=a2^2=10^8=10^(2^3).an=10^(2^n)
(1)6a1=a1^2+3a1+2解得a1=1或2(2)6sn=an^2+3an+26s(n-1)=a(n-1)^2+3a(n-1)+2两式想减得6an=an^2-a(n-1)^2+3an-3a(n-
(1)当n=1时,a1=s1=14a21+12a1−34,解出a1=3,又4Sn=an2+2an-3①当n≥2时4sn-1=an-12+2an-1-3②①-②4an=an2-an-12+2(an-an
(Ⅰ)点(an,an+1)在函数f(x)=2x²+2x上,即a(n+1)=2a(n)²+2a(n)2a(n+1)+1=4a(n)²+4a(n)+1=[2a(n)+1]
∵1=2,an+1=1+an1−an(n∈N*),∴a2=1+a11−a1=1+21−2=-3,a3=1+a21−a2=1−31+3=−12a4=1+a31−a3=1−121+12=13a5=1+a4
证明:(1)∵an2-2anSn+1=0,an=Sn-Sn-1(n≥2)∴(Sn-Sn-1)2-2(Sn-Sn-1)Sn+1=0⇒Sn2-Sn-12=1故{Sn2}成等差数列.(2)∵a12-2a12