怎样调用函数求可逆矩阵P,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 23:11:45
|A-λE|=(2-λ)(3-λ)^2.所以A的特征值为2,3,3(A-2E)X=0的基础解系为a1=(1,0,0)'.(A-3E)X=0的基础解系为a2=(0,1,0)',a3=(-2,0,1)'.
N阶方阵A为可逆的充要条件是它的行列式不等于0.一般只要看它的行列式就可以啦.(并非任意一个方阵都有可逆矩阵)
任一矩阵都可经初等行变换化成行最简形,左乘一个初等矩阵相当于对A进行一次初等行变换.这样的话,就存在若干初等矩阵P1,...,Ps,使得P1P2...PsA=行最简形.所以P1P2...Ps(A,E)
(A,E)=123100234010345001r2-2r1,r3-3r11231000-1-2-2100-2-4-301r1+2r2,r3-2r210-1-3200-1-2-2100001-21r2
行最简形是唯一的当A可逆时,P唯一当A不可逆时,P不唯一
将矩阵A与一个行数相等的单位矩阵拼起来,即(A,E),对这个矩阵施行初等行变换,当把A化为它的行最简矩阵B时,E就化为了要求的可逆矩阵P.使得PA=B.再问:请问原理是什么再答:对(A,E)实行初等行
构造分块矩阵AE同时,对矩阵用初等列变换(同时对上半块用相应的初等行变换)把上半块化为B最后化为BP则P即为所求.再问:对整个分块矩阵做初等列变换,而只对上半块做相应的初等行变换是吧?如果是这样的话,
如果要在vc中调用matlab函数,有两个方法,一是在matlab6.5版本中,用它的C++数学库函数,另外一种是在matlab7.0以上的版本中,将matlab函数编译成dll库,然后在VC里调用即
对每个特征值λ,求出(A-λE)X=0的基础解系,由基础解系构成P.Ax=0的基础解系为a1=(-2,1)'(A-5E)x=0的基础解系为a2=(1,2)'令P=(a1,a2)=-2112则P可逆,且
2B^(-1)A=A-4E2A=AB-4BAB-2A-4B=0(A-4E)(B-2E)=AB-2A-4B+8E=8E故(B-2E)^(-1)=(1/8)(A-4E)第二问不想算了,简单思路(B-2E)
|A-λE|=(1-λ)^2(6-λ).A的特征值为1,1,6(A-E)X=0的基础解系为:a1=(0,1,0)',a2=(1,0,-1)'(A-6E)X=0的基础解系为:a3=(1,3,4)'令P=
利用将矩阵与单位矩阵并成增广阵,再用初等变换,将原矩阵变换成单位矩阵,单位矩阵就变成了逆阵.如原矩阵是降低的,就变换不了,即不可逆.也可用行列式判定可逆.如果要求逆阵,用上面的方式可以一步到位.有些矩
求一个可逆矩阵P,使P^(-1)AP为对角矩阵时,并不要求P是正交矩阵,但可以要求P是正交矩阵.
|A-λE|=1-λ-1-222-λ-2-2-11-λc1+c3-1-λ-1-202-λ-2-1-λ-11-λr3-r1-1-λ-1-202-λ-2003-λ=(-1-λ)(2-λ)(3-λ).所以A
(1)(A-E)(A+2E)/2=E,所以可逆,其逆就是(A-2E)/2(2)行互换,相当于A乘以初等矩阵,初等矩阵可逆,所以B可逆
解:|A-λE|=1-λ-333-5-λ36-64-λr1-r2,r3-2r2-2-λ2+λ03-5-λ304+2λ-2-λc2+c1+2c3-2-λ0034-λ300-2-λ=(4-λ)(2+λ)^
|A-λE|=-1-λ333-1-λ333-1-λ=5-λ335-λ-1-λ35-λ3-1-λ=5-λ330-4-λ000-4-λ=(5-λ)(-4-λ)^2.A的特征值为5,-4,-4(A-5E)X
设此矩阵A的特征值为λ则|A-λE|=4-λ0003-λ1013-λ按第1行展开=(4-λ)*(λ^2-6λ+8)=0解得λ=2,4,4当λ=2时,A-2E=200011011第1行除以2,第3行减去
P=1-2-1/301-1/3001--------问题实则对A进行同样的行列初等变换,化为对角矩阵.对A进行列初等变换,把A化为下三角矩阵,找到P
这个主要是因为要依赖#include程序如下:#include#includeintmain(){inta=16;printf("%d",(int)sqrt(a));return0;}再问:赞