AM是經過三角形ABC的三個頂點的圓O的直徑
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:26:57
(1)三角形ABM是相似于三角形DEN的,证明如下由三角形ABC~三角形DEF,故角ABC=角DEF又AM,DN分别是三角形ABC和三角形DEF的高,故角AMB=角DNE=90度三角形ABM与三角形D
再答:����再答:����Ŷ
设向量AB=a,向量AC=b,向量AM=c向量BM=d,延长AM到D使AM=DM,连接BD,CD,则ABCD为平行四边形则向量a+b=2c(a+b)平方=4c平方a平方+2ab+b平方=4c平方(1)
根据在△ABC中,根据三线合一定理与勾股定理即可求得AN的长,然后根据重心的性质求得AM的长,如图,延长AM,交BC于N点,∵AB=AC,∴△ABC为等腰三角形,又∵M是△ABC的重心,∴AN为中线,
连接CM∵⊿CMD与⊿DMN等底等高∴⊿BND的面积等于⊿BCM的面积∵M是AB的中点⊿BND的面积等于12
延长AM至N,使MN=AM,连结BN,BM=CM,MN=AM,AN,AN=2AM,∴AM
设三角形A(a,0),B(b,0),C(c,y)M((a+b+c)/3,y/3)向量AM=((b+c-2a)/3,y/3)向量BM=((a+c-2b)/3,y/3)向量CM=((a+b-2c)/3,-
自C作AM的平行线,与BA交一点,然后用中线定理结合三角形两边之差小于第三边定理即可证明再问:能给我过程吗再答:按我上面说的,假设交点为D,则2AM=CDAB=AD三角形中位线定理AD-AC
做BH//AC,CH//AB,BH与CH交于H点,ABHC为平行四边形,连接HM,因M是BC的中点,A、M、H共线,AM=AH/2.因AB//CH,所以角BAC+角ACH=180度;角BAE=角CAG
延长AM到点D,使MD=AM,连接BD易证△AMN与△BMD全等所以BD=AN在△ABD中,AD
(∵2AM<AB+AC,2CM<AB+AC∴2AM=2CMAM=CM)这里错误2AM<AB+AC,2CM<AB+AC不能推出AM=CM例如2X3<9,2X4<9
依题意作图(见图).已知∠CAM=∠DAM,CN∥AM.由图可知∠CNA+∠NCA=∠CAD(外角和)∵CN∥AM∴∠DAM=∠CNA(同位角),∠CAM=∠NCA(内错角)∵∠CAM=∠DAM,∴∠
延长AM至P,使AM=AP.再过M作DM平行于BP,交AB于D(利用中位线的性质,D是中点).在三角形ADM中,两边之差小于第三边.即AM大于二分之一(AB-AC).再问:方便上传延长后的图型吗?再答
证明:在三角形ABM中,根据三角形两边之差小于第三边,得AB-BM
作AE∥BC交CD延长线于E,∴∠EAD=∠CBD,∠E=MCN∠ADE=∠BDC,且AD=BD∴△ADE≌△BDC∴AE=BC,又∵CN=MN∴∠MCN=∠CMN,又∵∠AME=∠CMN∴∠AME=
这是江苏高考的一个填空题.PB+PC=2PM,则:PA(PB+PC)=PA*2PM,设|PA|=x,则:=2x×(4-x)(-1)=-2(4x-x²)=2x²-8x=2(x-2)&
证明,我不画图了,你自己看吧在△ABM内,因为DE//AM有DE/AM=BD/BM.(1)在△CED中由AM//DF,则有AM/DF=CM/CD,倒过来有DE/AM=CD/CM.(2)因为AM为△AB
证明:在三角形ABM中,根据三角形两边之差小于第三边,得AB-BM