怎样求基础解系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:10:21
x1+x2=0,x2-x3=0则x1=-x2x3=x2则x2=t时,x1=-t,x3=t所以基础解系为:(-1,1,1)
求非其次的特解,你令x3等于任何数都行,x3=0当然可以而且简单,所以一般都是令为0求其次方程(导出组)的基础解系,只能领x3=1,而且一般都是令x3=x3,或者x3=t.不过反正基础解系前面有K,所
俗话说“基础不牢,地动山摇”,数学基础打得牢与不牢,是影响学生成绩好与坏的重要因素.什么是基础?基础知识、基本技能、基本数学思想是高中数学的基础,教学大纲中列出的所有知识点都是基础知识.数学的知识体系
x1x2...xn为基础解系的基础解则a1x1+a2x2+...anxn为其次方程的通解a1a2...an属于R
以左边为例,先把5变成1,然后-2-4能变成0,然后把3变成1,最后5就成0了.然后秩就是2,基础解系自然就出来了.建议楼主多看书,多练习,李永乐的线代讲义很不错
系数矩阵A=21-1142-2121-1-1r2-2r1,r3-r121-11000-1000-2r2+r2,r3-2r2,r2*(-1)21-1000010000选x1,x3作自由未知量,得基础解系
晕死~那不是T次方,T是转置的意思,你求的X是列向量,而写出的[0,1,1]是行向量,所以加个T.你把这个式子展开就有X1=0,X2-X3=0,所以X3是个自由量,你给它赋个值(一般就是1,你要是就不
不过,需要注意的是,这2000个单词的学习不能像我们平时背四六级单词一样,背个读音和中文解释就好.对于这最常用的2000个单词,我们需要真正做到活学活用.所以,不要再因循守旧地苦背单词书了!去阅读地道
|A-λE|=(2-λ)^2×(4-λ)λ=2,2,4λ=2,解(A-2E)X=0得基础解系,p1=(1,0,0)^Tp2=(0,-1,1)λ=2对应的特征向量p=k1p1+k2p2(k1,k2不同时
齐次线性方程组只需考虑系数矩阵,因为增广矩阵的最后一列都是0.解:系数矩阵=1-24-721-213-12-4r2-2r1,r3-3r11-24-705-101505-1017r3-r2,r2*(1/
系数矩阵A=1-23-401-11130-31-43-2r3-r1,r4-r11-23-401-1105-310-202r1+2r2,r3-5r2,r4+2r2101-201-11002-400-24
点击[http://pinyin.cn/1bSzi81b4Oz]查看这张图片.
(2)解: 系数矩阵 A=124-3356-445-233824-19r2-3r1,r3-4r1,r4-3r1124-30-1-650-3-18150212-10r1+2r2,r3-3r2,r4+2r
A=1-8102245-1386-2-->r2-2r1,r3-3r11-8102020-15-5032-24-8r2*(-1/5),r3*(-1/8)1-81020-4310-431r1-2r2,r3
再答:问题就在于A不是对角矩阵而是一个秩为1的矩阵。如果是你说的那种矩阵,那么应该是一个五个自变量均等于零的方程组
同学,哪种方程组啊,不懂说啥再问:就是非齐次线性方程组。。。
上面的解法的确是可以看出来的,你不妨将第一题的最后一个矩阵重新写成方程组的形式,你会看到最后一列如果放到等号右边,那么前面的三个未知量x1,x2,x3就完全可以由x4确定了,这时我们取x4为1,正好x
X1=4*X3-X4+X5;X2=-2*X3-2X4-X5.基础解系:b1=(4,-2,1,0,0)T,b2=(-1,-2,0,1,0)T,b3=(1,-1,0,0,1)T.
A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX
看线代书嘛,先求特征值,在求特征值对应的特征向量,所有特征向量的线线组合就是基础解系.