怎样对一组数据进行显著性差异分析
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:42:27
先选定这些数据,然后再工具栏中点击“数据”栏.选择“排序”,在里面选择降序排列 就OK了.或者直接点快捷图标
相关性分析会得出一个p值,如果p值
(1)由于是沿着河流采样,数据不具有独立性.(2)应上每个采样点进行重复取样(至少有2次取样),才能比较5个采样点的浓度是否存在显著性差异.检验方法:单因素方差分析.
t检验的计算涉及两个主要的统计量,一个是均值差,另一个是标准误,因此,t检验的大小也是由二者共同决定,并不是说均值差异看起来很大,t值就一定显著,如果你的标准误过大,表明你的取样可能存在问题,这会影响
t值越大,sig值越小.sig值小于0.01或者0.05或者0.1就是显著异于0了.
先画原始数据的散点图,散点大致呈线性分布,可以用y=ax+b方程来回归其次是在excel中根据系数计算公式计算,公式如下:利用excel进行计算,最后得出b=-41.2169 a
百分比不好直接比,因为卡方值会随人数增加,请给出真正的人数.再问: &
检验方法有很多,如开方检验,t检验,具体参照概率论与数理统计
把数据输入spss中,如果为独立样本,那么就一列输入组别,定义变量第一组为1,第二组为2,以此类推,第二列输入数据,输入每个数据,这样就可以得到两列数据,然后选择spss中analyze下的compa
CORREL返回两个数据集之间的相关系数.公式为=CORREL(a1:aN,b1:bN)
只有一组数据无法判断数据有无显著性差异只能做出这组数据的平均离差、标准差、方差、平均数等等统计量
你要是就做两组的检验,t检验就行.第一组的第一个题和第二组的第一个题.你要是想做多组的,应该用方差分析了.就是ANOVA或者univarite~也在analyse里面
两个数据比较大小就可以了.至少两组数据才需要显著性差异分析.
根据两组样本量n的大小来判定n均小于30或50就选成组设计t检验;否则就选成组设计u检验.
显著性检验的基本思想可以用小概率原理来解释.1.小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中事件事实上发生了.那只能认为事件不是来自我们假设的总体,也就是认为我们对总体所做的
方差分析由于涉及三组以上,因此比t检验需要有更多的注意问题.目前临床最常见的错误就是关于两两比较方面的.对于三组及以上资料,一般来讲,采用方差分析得到的F值是一个组间的总体比较.例如三组间比较如果有差
晕,T检验(独立样本T检验、相关样本T检验)、方差分析(one-wayanova;univerate;repeatedmeasure)、非参检验(卡方检验,crosstable等)都可以来看显著性.你
不能用t-test检验差异性,但频率可以用交叉表中的卡方检验差异显著性.通过检验,结果为:X2=79.347,df=1,P=0.000<0.001说明,两种频率之间存在极显著性差异.
这一列数据在A列的话在B1写公式=A1*79+2000然后向下复制