怎么证明对角互补的四边形为圆内接四边形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:38:07
假设四边形ABCD中,∠A+∠C=180°,则ABCD四点共圆反证法证明 现就“若平面上四点连成四边形的对角互补.那么这个四点共圆”证明如下(其它画个证明图如后) 已知:四边形ABCD中,∠A+∠
设这三个角为2X,3X和7X则2X+3X+7X+(180-3X)=3609X=180X=202X=403X=607X=140另一个角为180-60=120答:这四个内角分别是40°、60°、140°和
正方形是,但不是所有的两组对角分别互补的四边形都是平行四边形例如四边形∠A=120°,∠B=110°,∠C=60°,∠D=70°再问:那这题到底怎么选呢?!我纠结的在这里再答:这句话是错的,判断题就是
现就“若平面上四点连成四边形的对角互补.那末这四点共圆”证明如下(其它画个证明图如后)已知:四边形ABCD中,∠A+∠C=180°求证:四边形ABCD内接于一个圆(A,B,C,D四点共圆)证明:用反证
也许可以用反证法再问:怎么证呢?再答:再问:谢谢您!再问:证明:平行于三角形的底边而介于其他两边间的线段,必被底边上的中线所平分。再答:用相似比应该很简单吧!再问:我现在就在证明它。再答:有什么问题?
设其中一个角为∠1,它的对角为∠2.已知∠1+∠2=180°求证:∠1.∠2所在的四边形内接于圆.因为∠1+∠2=180°所以∠1所对的弧+∠2所对的弧=2*(∠1+∠2)=360°所以∠1+∠2所在
不是真命题.用两个一角为30度的直角三角形拼起来就不是平行四边形.
如图,四边形ABCD中,∠A+∠C=180°,∠B+∠D=180°求证:四边形ABCD是圆内接四边形证明:过点A、B、C作圆O若点D在圆外,则∠D+∠B<180°(圆外角小于圆周角)若点D在圆内
将四边形未知度数的两个角的顶点连起来.设已知角是A,B.未知角是P,Q.找三角形PAQ的外接圆的圆心,所以要画AP,AQ的垂直平分线.设交点是O.很容易看出角O是60度.既弧PAQ的一半的圆心角是60
如图图画的不好,将就看哈!ABCD是圆O的内接四边形过D做圆直径DE则角CDE+CED=90度 角ADE+AED=90度那么,角(CDE+ADE)+(CED+AED)=180度即
前面几位的证明,是在承认四边形内接于圆的前提下进行证明,所以这是证题的大忌.我的证明,源于几何课本(不是原文).已知:四边形ABCD中,∠BAD+∠BCD=180°求证:四边形ABCD内接于圆.证明:
可以去书店看看啊,有很多解析几何的辅导书上面都有的,还有一些小册子,看起来方便多了,也方便你背和复习啊,在这里问,之后就忘了,而且也不方便你反复看,这些东西是要反复记的,还要经常做题运用才能真正掌握.
(1)到一定点等距离的n个点在同一个圆上;(2)同斜边的直角三角形的各顶点共圆;(3)同底同侧相等角的三角形的各顶点共圆;(4)如果一个四边形的一组对角互补,那么它的四个顶点共圆;(5)如果四边形的一
证明四点共圆的基本方法证明四点共圆有下述一些基本方法:方法1从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.方法2把被证共圆的四个点连成共底边的两个三
连接内接四边形的对角线,则把圆截成一个优弧和劣弧,对角和即优劣弧所对圆周角之和,即=1/2优弧+1/2劣弧=1/2(优弧+劣弧)=1/2*360=180.逆定理:如果一个四边形对角互补,则它一定有外接
连接AC,BD根据同弧所对的圆周角相等有∠CAD=∠CBD∠BAC=∠BDC∠ACD=∠ABD∠ADB=∠ACB因为四边形内角和为360度所以∠CAD+∠CBD+∠BAC+∠BDC+∠ACD+∠ABD
如图ABCD是圆O的内接四边形过D做圆直径DE则角CDE+CED=90度 角ADE+AED=90度那么,角(CDE+ADE)+(CED+AED)=180度即角ADC+AEC=18
根据圆弧的度数A所对的圆弧BCD与C所对的圆弧BAD圆弧BCD所对圆周角+圆BAD所对圆周角=180度
假设这ABCD四点不共圆,则其中有三点ABC必有外接圆O,则点D不在圆O上,有二种情况:点D在圆内或点D在圆外,下面要否定这两种情况,若点D在圆O内,(图自己画)延长AD交圆O于E,则ABCE四点共圆
请看证明过程(单击图片更清晰)