怎么由矩阵的特征值求其基础解系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:57:06
我们课本最常见的就是三阶,而且考试也以三阶为主,我就给你用三阶的举例说明吧三阶方阵A求特征向量,特征值的方法:1,先求特征多项式|λE-A|=0解出特征值λ1,λ2,λ3特征值一定有三个(因为三阶,或
A^2=0但A非零,所以A的极小多项式是x^2,所有的特征值都是03阶幂零阵的Jordan型只有三种情况1.三个1阶块2.一个1阶块和一个2阶块3.一个3阶块显然第2种是唯一满足条件的(逐一分析即可)
矩阵的特征多项式,你知道吗?xE-A的那个,把行列式展开,是一个n次多项式.由根系关系可得.特征值的和就等于多项式得根得和,就是第n-1次项的系数,是a11+a22+`````+ann总之,你把那个行
设矩阵A经过初等行变换之后,化为上三角矩阵B,则A等价于B矩阵A'经过初等列变换之后,可化为下三角矩阵C,则A'等价于C显然,B的转置矩阵B'=C因为,转置之后对角线上的元素不变,所以,B和C的对角线
例:a=[123456789]在命令窗口输入:[v,d]=eig(a),的以下结果:v=-0.2404-0.67470.5185-0.5469-0.2339-0.7890-0.80190.70010.
不好意思,这两天有事没上网. 齐次线性方程组的基础解系不是唯一的,两个基础解系都对只要满足:是Ax=0的解线性无关个数为n-r(A)则都是基础解系
-111-1就是-X1+X2+X3-X4=0分别令:X2=1,X3=0,X4=0,解得X1=1令:X2=0,X3=1,X4=0,解得X1=1令:X2=0,X3=0,X4=-1,解得X1=1(1,1,0
由于Aα1=λ1α1,Aα2=λ2α2,所以A[α1α2]=[α1α2]diag(λ1λ2),其中[α1α2]为由两个特征向量作为列的矩阵,diag(λ1λ2)为由于特征值作为对角元的对角矩阵.记P=
矩阵的特征值等于逆矩阵特征值的倒数,反过来也一样,记住这个定理哦
可任意排列,但必须与P的列对应
A-vE=|3-v1|=v^2-2v-8=(v-4)(v+2)|5-1-v|特征值为:4,-2.对特征值4,(-11;5-5)*(x1,x2)'=(0,0)'对应的特征向量为:(1,1);对特征值-2
都取0有什么意义?齐次方程组一定有零解,我们要求的是非零解.用x3,x4表示x1,x2,也就是说x3,x4是自由未知量,要求取值是线性无关的,比如x3=1,x4=0和x3=0,x4=1.也可以取其它线
再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础
顺序随意,一般来讲完全没有要求再问:那答案就和他的不一样了再答:这有什么奇怪的,正确的答案未必是唯一的
(1,0,0,1)应该是(1,0,0,-1)两个都可以前者所得是一个正交的基础解系在解决正交对角化问题时可避免基础解系的正交化这需要好好观察方程,有一定技巧再问:那请问如何求出的上面第一个答案的三个呢
特征向量是相应齐次线性方程组的非零解如果这不清楚的话,建议你系统地看看教材,注意以下结论:1.λ0是A的特征值|A-λ0|=02.α是A的属于特征值λ0的特征向量α是齐次线性方程组(A-λ0E)X=0
设矩阵A的特征值为λ则A-λE=2-λ-125-3-λ3-10-2-λ令其行列式等于0,即2-λ-125-3-λ3-10-2-λ第3列加上第1列乘以-2-λ=2-λ-1λ^2-25-3-λ-5λ-7-
这个是不行的要加条件条件是:n个特征值一定要对应n个线性无关的特征向量,一定是n个特征向量.那么可以将n个特征值排列在对角线上,构成n阶的对角阵B.将特征值对应的特征向量作为列向量排列成矩阵P,即P=
A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX
矩阵的特征值λ满足det(A-λ×I)=0,其中I是单位矩阵A-λ×I=1-λ-1113-λ-1111-λ所以det(A-λ×I)=(1-λ)[(3-λ)(1-λ)+1]-(-1)[1(1-λ)+1]