ad是三角形abc的边bc上的高,BF垂直AC,BE=ac

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 03:20:38
ad是三角形abc的边bc上的高,BF垂直AC,BE=ac
如图所示AD,CE分别是三角形ABC中边BC,AB上的高AD等于10CE等于9AB等于12BC长是几?

根据△ABC面积不变求解,△ABC面积=(1/2)AB*CE=(1/2)*BC*AD,即12*9=BC*10,所以BC=54/5

在三角形ABC中AB=AC,点D是边BC上一点以AD为一边在AD的右侧作三角形ADE使

α+β=180°理由:∵∠DAE=∠BAC∴∠DAE-∠CAD=∠BAC-∠CAD即∠BAD=∠CAE∵AB=ACAD=AE∴△ABD≌△ACE(SAS)∴∠ACE=∠ABD∵∠BAC+∠ABC+∠A

如图,ad是三角形abc的bc上的中线,求证:ad

延长AD到E,使DE=AD,连结BE∵BD=CD,DE=AD,∠BDE=∠ADC∴△ADC全等于△EDB∴AC=BE在△ABE中,AB+BE>AE即AB+AC>2AD∴AD

三角形ABC中,角BAC=90度,MN是三角形ABC的中位线,AD是BC上的中线.

用到两个定理1.直角三角形斜边中线等于斜边一半2.中位线平行边且为边长的一半∵△ABC为RT三角形又∵AD是BC上的中线∴AD=BC/2∵MN是中位线∴MN=BC/2∴AD=MN

如图,在三角形ABC中,AB=3,AC=5,AD是边BC上的中线,AD=ED=2,求三角形ABC面积.

因为三角形CED与ADB为直角三角形又AD=DE,CD=DB根据直角三角形斜边直角边定理三角形CED与ADB全等在直角三角形ACE中CE^2=5^2-4^2=3^2,所以CE=3,所以AB=CE=3三

AD是三角形ABC的边BC上的高,AE是圆O的直径,求证:1,三角形ADB~三角形ACE;2,AB*AC=AD*AE.

证:AE为直径→∠ACE=∠ADB=90°∠E和∠B为同弧所对圆周角→∠E=∠B→△ADB∽△ACE→AB/AD=AE/AC→AB*AC=AD*AE证毕!

在三角形ABC中,AD是三角形ABC的边BC上的中线,AB等于BC,且AD把三角形ABC的周长分成3和4两部分,求AC边

1)AB+BD=3,则AB=2,BD=1,CD=1,AC=4-CD=3.2)AB+BD=4,则AB=8/3,BD=4/3,CD=4/3,AC=3-CD=5/3.

D是三角形ABC中BC上的一点,说明2AD<AB+BC+AC

点做BC垂线交BC于E;则有AE=BE=CE;可得:AE²+DE²=AD²BD²=(BE-DE)²=BE²-2BE*DE+DE²C

已知:三角形ABC中,AB=25,AC=17,AD是BC上的高,且AD=15,求BC边的长

因为AD是BC上的高,所以三角形ABD和三角形ACD都是直角三角形,所以AB平方=AD平方+BD平方,AC平方=AD平方+CD平方,因为AB=25,AC=17,AD=15,所以BD平方=400,CD平

设向量AD是三角形ABC中边BC上的中线,若向量AC=a,向量BC=b,则向量AD等于

向量BC=b,D是BC中点,则向量DC=b/2,向量CD=-b/2向量AD=向量AC+向量CD=a-b/2选择A

在三角形abc中,ad是边bc的中线,证明:ab+ac>2ad

中线倍长法延长AD至E使DE=AD,连接EB在三角形ADC与三角形EDB中,CD=BD,AD=ED,∠ADC=∠EDB所以三角形ADC≌三角形EAB(SAS)所以AC=EB,在三角形EBA中,AB+B

在三角形ABC中,AD是边BC上的中线,AB=5,AD=2,AC=3,求BC长

利用海伦公式做(abc的面积被平分为abd,acd)设bc=2x求解x即可海伦公式;s=(p*(p-a)*(p-b)*(p-c))^(1/2),p=1/2*(a+b+c)

三角形abc的顶点A B C 都在圆O上,AE是圆O的直径,AD是三角形abc的边BC上的高

连接EC,则:角ACE=90度=角ADB角B=角E所以:三角形ADB相似于三角形ACEAB/AE=AD/ACAB*AC=AE*AD

已知:如图,在三角形ABC中,点D在边BC上,BE平行于CF,求证;AD是三角形ABC的中线

∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线

如图所示,在Rt三角形ABC中,AD是斜边上的高,P,Q,R分别是边AB,BC,CA上的点,求证:AD

作Q关于AB,AC对称点Q1,Q2∵PQ=PQ1,QR=Q2R∴PQ+QR+PR>=Q1Q2,(当P,R都在A点取等)∵∠Q1AB=∠QAB,∠Q2AC=∠QAC∴∠Q1AB+∠Q2AC=∠QAB+∠

已知向量AD,向量BE分别是三角形ABC得边BC,AC上的中线

答案应该是:2/3a+4/3b这是因为,由向量加法的三角形法,有:BC=b+EC;AC=a+DC;EC=AC/2;DC=BC/2;由此得:BC=a/2+b+BC/4解得BC=2/3a+4/3

如图,在三角形ABC中,点D在边BC上,BC平行于CF,且BE=CF,求证AD是三角形ABC的中线

∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线再问:可是我证明了两次再问:我证明完三角形BDC全等于三角形FPC

三角形ABC中,M是BC的中点,AD是

延长BD,交AC于点N∵AD⊥BN,AD平分∠BAN,AD=AD∴△ABD≌△AND∴AB=AN,BD=DN∵M是BC的中点∴DM是△BCN的中位线∴DM=1/2CN=1/2(AC-AN)=1/2(A

设AD、BE分别是三角形ABC的边BC、AC上的中线,且向量AD=a,向量BE=b,则BC=?

BC、AC上的中线交与p则向量PD=向量AD/3=a/3向量BP=向量BE*2/3=2b/3向量BD=向量BP+向量PD=2b/3+a/3向量BC=2向量BD=(4b+2a)/3

已知:AD是三角形ABC外接圆O的直径,AE是三角形ABC边BC上的高,DF垂直BC,F为垂足

过O作OH⊥BC于H,则BH=CH(垂径分弦),∵DF⊥BC,AE⊥BC,∴DF∥OH∥AE,∴EH/FH=AO/BO=1(平行线分线段成比例),∴EH=FH,∴BH-FH=CH-EH,即BF=EC.