ad平行cd平行gheg平分角efd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 20:13:44
延长AE至F,交BC的延长线于F.因为AD//BC所以∠DAB+∠ABC=180又因为AE,BE分别平分∠DAB,∠ABC所以∠EAB+∠ABE=90即三角形ABE是直角三角形,即BE是三角形ABF的
过E作EF‖AD交AB于F,∵AE是∠BAD的平分线,∴∠DAE=∠FAE又∠DAE=∠AEF,∴∠FAE=∠AEF,∴AF=EF.又E是CD的中点,∴F也是AB的中点,(EF是梯形的中位线)∴EF=
有没有图不然很难做
证明:∵AB‖CD,CE‖AD∴四边形AECD是平行四边形又∵AC平分角BAD所以∠BAC=∠DAC∵AB‖CD∴∠BAC=∠DCA∴∠DAC=∠DCA∴DA=DC∴四边形AECD是菱形
取AB中点E,连接DE∵AB∥CDBE=1/2AB=CD∴EBCD为平行四边形∴∠EDB=∠DBC∵△ADB为直角三角形,E为斜边中点∴ED=EB∴∠EDB=∠EBD∴∠DBC=∠EBD所以BD平分∠
证:AD=AC,DE平行于BC,DC平分∠EDF∴∠EDC=∠DCF=∠CDF∴△CDF是等腰三角形,CF=DF∵∠ADF=∠ACF∴△ADF≌△ACF∠AFC=∠AFDAF,CD交于O△OFD≌△O
证明:延长CD交AB于F因为AD平分角BAC所以角FAD=角CAD因为AD垂直CD所以角FDA=角CDA=90度因为AD=AD所以三角形FAD和三角形CAD全等(SAS)搜易CD=DF因为G是BC的中
延长CD,交AB于E,∵∠ADE=∠ADC,∠EAD=∠CAD,AD=AD,∴△ADE≌△ADC,∴DE=DC,又∵GB=GC,∴DG∥AB(三角形中位线定理)
将AD延长交BC于F因为∠ADC=90°=∠CDF∠ACD=∠ACF(根据直角三角形“角边角定律”)所以三角形ACD和三角形FCD为相等三角形所以可以摧出AD=DF又因为AE=EB(E为AB中点)所以
做EF∥AD∥BC交CD于F∴∠ADE=∠FED∠FEC=∠BCE∵DE平分∠ADCCE平分∠BCD∴∠ADE=∠FDE=∠FED∠BCE=∠FCE=FEC∴DF=EF,EF=FC∴CD=DF+FC=
证明:∵EF‖CD∴∠BEF=∠BCD,∠DEF=∠CDE∵DE‖BC∴∠CDE=∠ACD∵CD平分∠ACB∴∠ACD=∠BCD∴∠BCD=∠CDE=∠DEF∴∠BEF=∠DEF即EF平分∠BED再问
AB=AD+BC证明:过E点做EM平行AD,交AB于M点.可以证明三角形ADE全等于三角形AME,从而得到AD=AM.再证明三角形BME全等于三角形BCE,从而得到BC=BM.可以证得AB=AD+BC
因为AB//CD,AD//BC则四边形ABCD为平行四边形,连接BD作角BAD、BCD的平分线分别交BD于点E、F点已证ABCD为平行四边形,则角BCD等于角BAD而CE、AE分别平分角BCD、BAD
第一问,已经回答,不再赘述.下面来证明二三小问.(2)证明:由AD//BC得AF//BC,则∠CBF=∠AFB(内错角)又EB为∠CBA的角平分线,即:∠ABF=∠CBF=∠AFB,∴△ABF为等腰△
取BC中点N则bn=cn连接MN得mn=(ab+cd)/2且mn平行于cd得角CMN=角DCM由CM平分角BCD得角MCD=角BCD所以mn=cn所以bn=mn所以bc=bn+cn=2mn所以.
延长AE至F,交BC的延长线于F.因为AD//BC所以∠DAB+∠ABC=180又因为AE,BE分别平分∠DAB,∠ABC所以∠EAB+∠ABE=90即三角形ABE是直角三角形,即BE是三角形ABF的
因为CD垂直CF,所以角DCF=90度已知点A、C、E在同一条直线上,所以角ACD+角BCF=180-90=90度又因为CD平分角ACE,即角ACD=角DCE,角DCF=角DCE+角FCE=90度所以
证明:∵EF‖CD∴∠BEF=∠BCD,∠DEF=∠CDE∵DE‖BC∴∠CDE=∠ACD∵CD平分∠ACB∴∠ACD=∠BCD∴∠BCD=∠CDE=∠DEF∴∠BEF=∠DEF即EF平分∠BED
∵AE平分角BAD∴∠BAE=∠DAE∵AB‖CD∴∠BAE=∠DFA∵∠DFA=∠CFE=∠E∴∠DAE=∠E∴AD‖BC
作EF∥AD交CD于F则∠EDF=∠EDA=∠DEF∠FCE=∠BCE=∠CEF(角平分线和内错角)∴DF=EF=CF(底角相等的三角形是等腰三角形)∴EF为梯形ABCD的中位线∴AD+BC=2EF=