AD平分角BAC DG垂直平分BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:21:42
∵EF垂直平分AD∴EA=ED∴∠EAD=∠EDA∵AD平分角BAC,即∠BAD=∠CAD又∵∠EDA=∠B+∠BAD;∠EAD=∠CAE+∠CAD∴∠B=∠EDA-∠BAD=∠EAD-∠CAD=∠C
因为 AD平分角BAC 所以 ∠cad=∠dae 因为 
证明:∵AD平分∠BAC∴∠BAD=∠CAD∵EF垂直平分AD∴AF=DF∴∠FAD=∠FDA∵∠FAD=∠CAF+∠CAD,∠FDA=∠B+∠BAD(∠FDA是△ABD的外角)∴∠CAF=∠B
证明:∵EF垂直平分AD,∴AF=DF,∠ADF=∠DAF,∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD,又∠BAD=∠CAD,∴∠B=∠CAF.
证明:∵DE∥AC∴∠CAD=∠ADE∵AD平分角CAB∴∠CAD=∠EAD∴∠EAD=∠ADE∴AE=DE(等角对等边)∵BD⊥AD∴∠ADE+∠EDB=90° ∠DAB+∠ABD=90°又∠AD
∠DAE=90°-(∠B+1/2∠A)=90°-(∠B+1/2(180°-∠C-∠B))=90°-∠B-90°+1/2∠C+1/2∠B=1/2∠C-1/2∠B=1/2(∠C-∠B)
EF垂直平分AD所以AE=ED所以在三角形EAD中,∠EDA=∠EAD又∠EAD=∠EAC+∠CAD,∠EDC=∠B+∠DAB所以∠EAC+∠CAD=∠B+∠DAB又AD平分∠BAC所以∠DAB=∠C
解题思路:垂直平分线认识解题过程:1.线段垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等。2.线段垂直平分线判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。3
相等证明:因为AD垂直于BCAE平分∠BAC且∠B
如图∵EF垂直平分AD∴EA=ED∴∠EAD=∠EDA∵AD平分角BAC,即∠BAD=∠CAD又∵∠EDA=∠B+∠BAD; ∠EAD=∠CAE+∠CAD∴∠B=∠EDA-∠BAD=∠EAD
∵EF垂直平分AD∴EA=ED∴∠EAD=∠EDA∵AD平分角BAC,即∠BAD=∠CAD又∵∠EDA=∠B+∠BAD;∠EAD=∠CAE+∠CAD∴∠B=∠EDA-∠BAD=∠EAD-∠CAD=∠C
1、∠DAE=(∠C-∠B)/2证明:∵∠BAC=180-(∠B+∠C),AE平分∠BAC∴∠CAE=∠BAC/2=90-(∠B+∠C)/2∵AD⊥BC∴∠ADC=90∴∠CAD+∠C=90∴∠CAD
根据已知条件可以得出,三角形AFD是等腰三角形,角FDA=角FAD(因为EF垂直平分AD,假设EF与AD的交点为O,则AO=DO,且角AOF=角DOF),根据三角形原则:角ADF=角B+角DAB,角F
,∵AD平分∠BAC,DE⊥AB,DF⊥AC,BD=DC∴AB=AC(等腰三角形三线合一),DE=DF,∠BED=∠CFD=90°∴∠B=∠C
证明∵EF垂直平分AD∴EA=ED∴∠EAD=∠EDA∵AD平分角BAC,即∠BAD=∠CAD又∵∠EDA=∠B+∠BAD;∠EAD=∠CAE+∠CAD∴∠B=∠EDA-∠BAD=∠EAD-∠CAD=
设角DAE=角1,角CAE=角2,角BAD=角3.因为角1+角3=角2角B+角3=90度=角C+角1+角2所以角B=2角1+角C则角B减角C=2角1
∵EF垂直平分AD∴AF=DF∴∠ADF=∠DAF∵∠ADF=∠B+∠BAD∴∠DAF=∠B+∠BAD∵AD平分∠BAC∴∠BAD=∠DAC∴∠DAF=∠B+∠DAC∴∠B=∠CAF
等于的.因为EF垂直平分AD,所以AE=DE,角ABF=角DEF.又因为EF=EF,所以三角形AEF全等于三角形DEF.所以角EAF=角EDF,AD平分角BAC所以角BAD=角CAD.又角EDF=角B
EF垂直平分AD则AE=DE∠EAD=∠ADE因∠EAD=∠EAC+∠CAD,∠ADE=∠B+∠BAD且∠CAD=∠BAD故∠EAC=∠B
设∠BAD=∠DAC=x则有x+∠2=90°∠1+∠2+2x+∠B=180°比较两式可得∠B=∠2-∠1