微分方程Y2YM (xym)2=xln y的阶数是多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 16:59:45
ydy=-2xdx积分y²/2=-x²+C'所以y²=-2x²+C
e^x(y''+y')=x^2e^x(y'e^x)'=x^2e^x两边积分:y'e^x=∫x^2e^xdx=x^2e^x-∫e^x*2xdx=x^2e^x-2xe^x+2∫e^xdx=x^2e^x-2
∵x+y-2009≥0,2009-x-y≥0∴x+y=2009①x+y-2009=2009-x-y=0∴√(3x+5y-3-m)+√(2x+3y-m)=0∴3x+5y-3-m=0②2x+3y-m=0③
x^2*dy/dx=xy-y^2dy/dx=y/x-y^2/x^2u=y/xy=xuy'=u+xu'代入:u+xu'=u+u^2xu'=u^2du/u^2=dx/x-1/u=lnx+lnCCx=e^(
∵y'=1/(2x-y²)∴dx/dy=2x-y².(1)∵齐次方程dx/dy-2x=0的特征方程是r-2=0,则r=2∴齐次方程dx/dy-2x=0的通解是x(y)=Ce^(2y
原式化为dy/dx=1/2-x/2y令u=y/x,y=ux则:dy/dx=xdu/dx+u代回有xdu/dx+u=1/2-1/(2u)du/dx=(1/2-u-1/(2u))/xdu/(1/2-u-1
[yy''-(y')^2]/(y^2)=lny(y'/y)'=lnyy'/y=y(lny-1)y'=y^2(lny-1).
:∵x+y-2009≥0,2009-x-y≥0∴x+y=2009①x+y-2009=2009-x-y=0∴√(3x+5y-3-m)+√(2x+3y-m)=0∴3x+5y-3-m=0②2x+3y-m=0
u=xy,y=u/x.y'=(xu'-u)/x^2(xu'-u)'+x^2*y=0xu''+u'-u'+xu=0u''+u=0u=Asinx+Bcosxy=A(sinx)/x+B(cosx)/x.A=
dy/dx=x^2y^2dy/y²=x²dx积分得-1/y=x³/3+C1y=-3/(x³+C)
J(x)是贝塞尔函数,再问:贝塞尔函数没学过,普通方法解不了吗?再答:就是说,你的那个方程式贝塞尔方程,它有级数解,
xdy+ydx-(x^2+3x+2)dx=0设dz(x,y)=xdy+ydx-(x^2+3x+2)dx∂z/∂y=x,z=xy+g(x),∂z/∂x=y
常数项就是不带有字母的项,所以这个式子中常数项是-5
xy互为倒数——》xy=1,mn互为相反数——》m+n=0,——》xym+n+x^2y^2=m+n+(xy)^2=0+1^2=1.
解题思路:两边同除以xy,再积分即可解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include
∵y'=sin²(x-y+1)==>dy/dx=sin²(x-y+1)==>1-dy/dx=1-sin²(x-y+1)==>(dx-dy)/dx=cos²(x-
两边同时对y积分得d(yy')=d(0.5y^2(lny-0.5))y'=0.5ylny-1/4y+c1/y积分得y=1/4y^2lny-1/4y^2+C1lny+C2
设通解为:y=C1*e^(0x)+C2*e^(-2x),C2=0,C1=1,y1=1,C1=0,C2=1,y2=e^(-2x),则特征方程为:r^2+2r=0,则该二阶常系数齐次线性微分方程为:y"+
楼上说的对但用分离变量法会更容易理解dy/dx=2x(2-y)dy/(2-y)=2xdx两边积分得:-ln|2-y|=x^2+c1y=2+ce^(-x^2)
方程化为y'+1/cos^2x*y=tanx/cos^2x∫dx/cos^2x=tanx∫-dx/cos^2x=-tanxe^(∫dx/cos^2x)=e^(tanx)e^(∫-dx/cos^2x)=