微分方程xdy dx=yln(y x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:37:28
令y=xu则y'=u+xu'代入原方程:x(u+xu')=xulnu得xu'=ulnu-udu/(ulnu-u)=dx/xd(lnu)/(lnu-1)=dx/x积分:ln|lnu-1|=ln|x|+C
dy/y=xdx两边积分:ln|y|=x^2/2+Cy=Ce^(x^2/2)再问:ln|y|=x^2/2+C到y=Ce^(x^2/2)怎么转换再答:|y|=e^(x^2/2)*e^Cy=±e^C*e^
ydy=-2xdx积分y²/2=-x²+C'所以y²=-2x²+C
e^x(y''+y')=x^2e^x(y'e^x)'=x^2e^x两边积分:y'e^x=∫x^2e^xdx=x^2e^x-∫e^x*2xdx=x^2e^x-2xe^x+2∫e^xdx=x^2e^x-2
dy/dx=3y=3x+c
令y=xu则y'=u+xu'代入原方程:x(u+xu')=xulnuxu'=u(lnu-1)du/[u(lnu-1)]=dx/xd(lnu)/(lnu-1)=dx/x积分:ln|lnu-1|=ln|x
∫1/y*1/lnydy=∫1/sinxdxlnlny=∫1/2/[sin(x/2)*cos(x/2)]dxlnlny=ln(sin(x/2))-ln(cos(x/2))+clny=e^c*tan(x
再答:前面打掉了一行,令y“=p
可分离变量型,通解为y=exp(C*x)
dhy2603,这题太容易了,xy'-ylny=0①,两边再对x求一次导得到y'+xy''-y'lny-yy'/y=0,即有xy''-y'lny=0②,联立两式得,ylny*y''/y'-y'lny=
设u=ln(xy)=lnx+lnydu=dx/x+dy/y原式化为dy/y+dx/x=ln(xy)dx/xdu=udx/xdu/u=dx/x得u=Cxln(xy)=Cx
特征函数r²-1=0r=1或-1那么y=C1e^x+C2e^(-x)C1C2常数
dy/dx=-ydy/y=-dx积分:ln|y|=-x+C1得y=C/e^x
直接积分就好了t=1/2*x^2+xy+c,c为常数
我觉得你们都在浪费楼主的时间,就让我来解答这个问题吧:这是个不显含x的二阶方程.令p=y'那么原方程变成:pdp/dy=y把它们分开分别积分:pdp=ydyp^2/2=y^2+C1即:p^2=y^2+
令p=y'则y"=pdp/dy代入原式:pdp/dy+p=pydp/dy+1=ydp=(y-1)dy积分:p=(y-1)²/2+c1即dy/dx=(y-1)²/2+c12dy/[(
楼上的答案完全正确.
再答:通解已求出,剩下的自己算算吧。再问:答案是-e^2吗再答:是的。
dy/dx=y(1/y)dy=dx两边积分后得ln丨y丨=x+cy=±e^(x+c)所以通解为y=ce^x
xy'=yln(y/x)令y=xv,y'=v+x·dv/dx=v+x·v'v+x·v'=v·ln(v)v'=(vln(v)-v)/x∫dv/[v(ln(v)-1)]=∫1/xdx∫d(ln(v)-1)