微分方程2y x 1=(x=1)3次方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:52:07
y'/y=1/(1+x^2)两边积分logy=arctanx+Cy=e^(arctanx+C)或者写成Ce^(arctanx)C是任意常数
这个不是方程!但这个式子是可以化简的,也可以积分∵d(x³)=3x²dx∴3x²/(1+x³)dx=d(x³)/(1+x³)=d(1+x&s
等式两边乘以e^[∫-2/(x+1)dx]得(x+1)^(-2)*y=∫(x+1)dx再次积分,得y=[(x+1)^4]/2+C(x+1)^2,C为常数
特征方程r²-3r+2=0得r=1,2齐次方程通解y1=C1e^x+C2e^2x方程右边为e^x+e^3x设特解为y*=axe^x+be^3x则y*'=a(1+x)e^x+3be^3xy*"
∵y'=1/(2x-y²)∴dx/dy=2x-y².(1)∵齐次方程dx/dy-2x=0的特征方程是r-2=0,则r=2∴齐次方程dx/dy-2x=0的通解是x(y)=Ce^(2y
x^2/(1+x^3)dx=1/3*1/(1+x^3)d(x^3+1)把x^3+1看成整体就好了,用公式积分1/xdx
原式化为dy/dx=1/2-x/2y令u=y/x,y=ux则:dy/dx=xdu/dx+u代回有xdu/dx+u=1/2-1/(2u)du/dx=(1/2-u-1/(2u))/xdu/(1/2-u-1
令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³
设y'=dy/dx,(y'-1)+x^3(y-x)^2=0;x^3=-(y'-1)/(y-x)^2=(1/(y-x))'所以x^4+C=4/(y-x).
一阶线性方程组先解dy/dx=2y/(x+1)得dy/y=2dx/(x+1)y=c(x+1)^2设c(x)是原方程的解,代入原方程得c'(x)*(x+1)^2=(x+1)^3c'(x)=x+1得c(x
这是典型的可化为齐次方程的方程dy/dx=(x-2y+1)/(2x+3y+2)=((x+1)-2y)/(2(x+1)-3y)设u=y/(x+1),y=u(x+1),y'=u'(x+1)+uu'(x+1
先求dy/dx+2xy=0的解:dy/y=-2xdx,--->lny=-x^2+C=-ln(e^(x^2))+lnC=ln(C*e^(-x^2)),即y=C*e^(-x^2).然后令y=C(x)*e^
符号可能在c里,c是任意常数
(x+y^2+3)dy=(x-y+1)dx或:xdy+ydx+(y^2+3)dy-(x+1)dx=d(xy)+(y^2+3)dy-(x+1)dx=0通解为:xy+y^3/3+3y-x^2/2-x=C
令z=1/x,则dx=-x²dz代入原方程得(x²y³+xy)dy=-x²dz==>dz/dy+y/x=-y³==>dz/dy+yz=-y³
xdy+ydx-(x^2+3x+2)dx=0设dz(x,y)=xdy+ydx-(x^2+3x+2)dx∂z/∂y=x,z=xy+g(x),∂z/∂x=y
再答:诚邀您加入百度知道团队“驾驭世界的数学”。
令u=e^y,则y=lnu,dy/dx=1/u*du/dx所以1/u*du/dx=(u+3x)/x^2x^2u'=u^2+3xuu'=(u/x)^2+3u/x令v=u/x,则u'=v+xv'v+xv'
2ydx+(y^3-x)dy=0dx/dy-(1/2y)x=-y^2/2,这是一阶线性方程,由通解公式:e^∫(1/2y)dy=√yx=√y(C+∫[(-y^2/2)/√y]dy)=√y(C-(1/5
令x=m+3/2,y=n-5/4,则dx=dm,dy=dn代入原方程,得2mdn=(m+2n)dm.(1)令n=mt,则dn=mdt+tdm代入方程(1),得2mdt=dm==>dm/m=2dt==>