微分方程(x-2)dy dx=y 2(x-2)--3解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/21 00:04:43
由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)
设t=x/y则x=tydx=tdy+ydtdy/dx=y/(x+y^2)=>dx/dy=x/y+y把dx代入t+ydt/dy=t+yydt/dy=ydt/dy=1t=y+C(C是常数)x=y^2+Cy
ydy=-2xdx积分y²/2=-x²+C'所以y²=-2x²+C
e^x(y''+y')=x^2e^x(y'e^x)'=x^2e^x两边积分:y'e^x=∫x^2e^xdx=x^2e^x-∫e^x*2xdx=x^2e^x-2xe^x+2∫e^xdx=x^2e^x-2
y'/y=1/(1+x^2)两边积分logy=arctanx+Cy=e^(arctanx+C)或者写成Ce^(arctanx)C是任意常数
∵y'=1/(2x-y²)∴dx/dy=2x-y².(1)∵齐次方程dx/dy-2x=0的特征方程是r-2=0,则r=2∴齐次方程dx/dy-2x=0的通解是x(y)=Ce^(2y
y'=e^(2x)/e^ye^ydy=e^(2x)dxe^y=(1/2)e^(2x)+Cy=ln[(1/2)e^(2x)+C]
其实很简单,楼主需要把微分和积分合起来玩,不要玩一个!设y=f(x),则dy/dx就为f(x)的导数y',同理dy^2/dx就是y^2对x的导数,即(y^2)'=2y*y'=2y*dy/dx,(y^2
方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1
该题可以先求出y‘与x的关系,解x*y'+1=(y')^2这个一元二次方程(这里把x作为常数),求出y’1和y'2.解得:y'1=(x+√(x^2+4))/2对它进行积分.∫(x+√(x^2+4))/
x+y+1=u1+y'=u'代入得:u'-1=u^2du/(1+u^2)=dx通解为:arctanu=x+Cx+y+1=tan(x+C)y=tan(x+C)-x-1
再问:可不可以解释下倒数第三步怎么变成倒数第二步的再答:公式积分{X^m*(LnX)^ndx}=1/(1+m)(Lnx)^n-n/(1+m)*积分{x^m*(Lnx)^(n-1)}dx再问:我怎么不记
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
解法一:(全微分法)∵dx/2(x+y^4)=dy/y==>ydx=2(x+y^4)dy==>ydx-2xdy=2y^4dy==>(ydx-2xdy)y³=2ydy==>d(x/y²
特征方程R^2-R+2=0,特征方程的解为R1=-1,R2=2;微分方程特解为C1e^(-x)+C2e^(2x);特解为1/2e^x;通解为y=C1e^(-x)+C2e^(2x)+1/2e^x;C1,
dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.
先把一阶导数换元成y,就好做了再答:通常还需要有初始条件,以便确定常数C。否则算不出来。对于某些特殊的C才可解。再答:哦,有点问题。我再看看再答:
这样解设y'=dy/dx=t,y''=d2y/dx2=dt/dx,带入得到t'(x+t^2)=t这样可以化成恰当方程dt=dx/t-x/t^2*dt=d(x/t)解得y'=t=(自己会算吧~)再积分一
方程化为y'+1/cos^2x*y=tanx/cos^2x∫dx/cos^2x=tanx∫-dx/cos^2x=-tanxe^(∫dx/cos^2x)=e^(tanx)e^(∫-dx/cos^2x)=
在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).