ab直径,bc为圆的切线ac交圆d,e是bc中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 09:08:52
(1)第一问有点无厘头~BD=BE.BC⊥AB.AB≥DE.∠EDB=∠DAB.∠ADB=90°.………………汗这种问题(2)因为∠DCB=∠BCA,∠CDB=∠CBA=90°,所以△DCB∽△BCA
连接AD,因AB是直径,所以:AD垂直BC而:DE垂直AC,所以:角DAC+角ADE=角DAC+角C=90度所以:角ADE=角C而:AB=AC,三角形ABC是等腰三角形,角B=角C所以:角ADE=角B
如图,连结OD,∵DE是圆O的切线,∴OD⊥DE,又∵AE⊥DE,∴OD∥AC,∴∠C=∠BDO,∵OB=OD,∴∠B=∠BDO,∴∠B=∠C,∴AB=AC
过O做OG⊥AD于G在△ABC中∵OD=AB/2=BC/2∠DOE=∠DFB=90°,即OD‖BC∴OD为△ABC中位线即AD=AC/2=4在等腰三角形AOD中OG为AD的垂直平分线即AG=AD/2=
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
令圆心为O,连接OD∵DF是圆的切线∴DF⊥OD∵OD=OC,∠C=60°∴△COD是等边三角形∠COD=60°,AD=DCOD//AB∴DF⊥ABAD=AF/sin60°=4AB=AC=4+4=8B
证明:在圆O中连接OEAD∵D.E两点都在圆上∴OB=OE∵OF=OF∵AB=AC且AB为圆O的直径∴∠ADB=90°∴D为BC边的中点∵O为AB变得中点∴OD为△ABC的中位线∴OD∥AC∴∠BOD
连接OE,因为角ABC等于角ACB等于角ODB,所以△ABC和△ODB相似,得出角BAC等于角BOC,所以AC和OF平行,角aeo等于eao等于eoa等于boe,又因为oe等于ob,△OEF和△OBF
∵AE平分∠BAC∴由角平分线定理可知AB/AC=BE/EC∵tan∠AEC=2设EC=a,则AC=2a∴有AB/5=2a/a,AB=10∵AC为⊙O切线∴∠ACB=90°在Rt△ABC中由勾股定理可
此题难度不小啊!码字不易,望楼主采纳!
连接AEAB为直径》》AEB=90AB=AC》》BAE=CAEBD为切线》》CBD=BAECBD=1/2*cab望采纳!谢谢!
费死劲了,半径=5;比较乱,慢慢看;设PO交BC于H,PO平行AC,则OH是中位线,H平分BC,即AB=AC;则AC是切线;且弧CD=BD;延长DE交圆与K,则AB平分DK,弧DB=BK;因弧CD=B
D是弧BC中点,弧BD=弧DC,所以圆周角BAD=圆周角DAC=角DAE,作DG垂直于AB交AB于G,角DGA=90度;DE垂直于AC交AC延长线于E,故角DEA=90度,角ADG=90度-角BAD;
(1)连接AD,则角ADC=90度,因为AB=AC,所以D为BC中点,连接OD,因为O为AC中点,所以OD//AB,因为DM为切线,所以角ODM=角BMD=90度,又角AEC=90度,所以DM//CE
联结OD∴AO=BO=DO=EO∴∠ABC=∠OEB∠BAC=∠ADO∵AB=AC∴∠ABC=∠C∴∠OEB=∠COE//AC∴∠BOE=∠BAC∠EOD=∠ADO∵∠BAC=∠ADO∴∠BOE=∠E
联结OD∴AO=BO=DO=EO∴∠ABC=∠OEB∠BAC=∠ADO∵AB=AC∴∠ABC=∠C∴∠OEB=∠COE//AC∴∠BOE=∠BAC∠EOD=∠ADO∵∠BAC=∠ADO∴∠BOE=∠E
点E为弧AB中点?应该是弧AD吧!连接CD易证三角形ADC为直角三角形,CE平分角ACD所以角FCD+角DFC=90度,角FCD=角ACF,角DFC=角FCB所以角ACF+角FCB=90度所以角ACB
证明:连接AP∵AB是⊙O的直径∴∠APB=90°∵AB=AC∴BP=CP(等腰三角形三线合一)∵AO=BO∴OP是△ABC的中位线∴OP//AC∵PD是⊙O的切线∴PD⊥OP∴PD⊥AC