ab是圆o的弦,CD是弦,AE垂直于CD,BF垂直于CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:01:09
1证明:连结OC,如图,∵C是劣弧AE的中点,∴OC⊥AE,∵CG∥AE,∴CG⊥OC,∴CG是⊙O的切线;(2)证明:连结AC、BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠2+∠BCD=90°
证明:连接BD、AD∵AB为直径∴∠ADB为直角又∵AE⊥CD∴∠DAE=∠BDC∴弧BC=弧ED
作OF垂直AB,则AB=BF=8.5,EF就是点O到CD的距离为4.5设秋千的固定点为A,最低点为B,最高点为C、D,连接CD交AB于O则OC=OD=4m,OB=1.3-0.3=1m,设秋千绳长为x,
1、取CD中点G,连接OG,CD为圆O的弦,OG⊥CD,OG∥AE∥BF,O为AB中点,∴G为EF中点故EG=GF又CG=DG,EG-CG=FG-DG,即CE=DF2、由1)OG=1/2(AE+BF)
证明:作OH垂直CD于H,则CH=DH.又AE垂直CD,BF垂直CD,故AE∥OH∥BF.所以,EH/HF=AO/OB=1.(平行线截线段成比例定理)故EH=HF,EH-CH=HF-DH,即EC=DF
AE-BF=6设AB与CD交于点G,连接圆心O与弦CD中点H,在线段AG上取点M,使GM=GB,过M做MN‖BF,MP‖CD,分别交CD和AE于N和P两点∵MN‖BF∴∠NMG=∠GBF∵GM=GB∠
作OM⊥CD于点M则MC=MD∵AE⊥CD,BF⊥CD∴AE‖OM‖BF∵AO=BO∴ME=MF∴MC-ME=MD-MF∴CE=DF再问:∵AO=BO∴ME=MF为什么再答:AO=BO(半径)AE‖O
/>连接OC,OD∵弦CD把圆O分成2:1的两部分∴∠COD=120°∴CE=2根号3∴OC=4∴圆O的直径=8∵∠C=30°∴OE=2∴AE=6或2
证明:连EB.∵AB是圆O的直径∴∠AEB=90°∴∠EGB+∠EBG=90°则对顶角∠CGF+∠EBG=90°--------(1)∵CD⊥AB∴∠C+∠CBD=90°---------(2)∵C是
连接EO因为CE平行AB,CO=EO得角OCE=OEC=DOA=AOE因为EO=OD,角DOA=AOE,AO为公共边所以三角形DOA与EOA全等则AE=AD再问:没有了很完美撒~顺便问一句……你认识E
联接FD,AC因AB⊥CD,所以AC=AD,即∠ADC=∠AFD(等弦对等角)∠FAD=∠EAD所以△AED∽△ADF即AD/AF=AE/ADAD^2=AF*AE
设AB与CD相较于G点,过圆心O做CD的垂线,使OH垂直于CD,则由相似定理GH/HE=GO/OA=GO/OB=HG/FH,所以HE=FH,又由于CH=DH,所以CE=DF自己画图慢慢体会吧,不知道你
发图你哈再答:再问:OD=1/2AB???再答:都是圆半径再问:帮我普及一下梯形关系,是两腰的中点连线等于上低加下底的一半吗?再答:嗯再答:中位线再问:怎么证明EC=DF?我只能证明圆里面的垂直平分.
证明:延长CF交⊙O于G,连接AG、EG,∵CF⊥AB于点D,AB为⊙O直径,∴AC=AG,∠C=∠AGC.∵∠E=∠C,∴∠AGC=∠E.∵∠GAF=∠EAG,∴△GAF∽△EAG.∴AG:AE=A
建议:\x09(4)多行单条件:
证明:连接AC、AD、AG、DG,∵AB是圆O的直径,∴∠AGB=RT∠,AE⊥CD,BF⊥CD,E,F分别为垂足,∴四边形AEFG是矩形.∴AE=GF,EF//AG,∴∠ADE=∠DAG,∴②弧AC
过O作OG⊥CD于G∵O为圆心,CD为弦,OG⊥CD∴CG=DG(弦的过圆心垂线平分弦)又∵AE⊥CD,BF⊥CD∴AE‖BF∴OA/OB=EG/FG(相似)又∵OA=OB∴EG=FG又∵CG=DG∴
联接BEAB由"直径所对圆周角为直角"知角AEB=90度则角AEO+角OED=90度,由AE平行CD,知角AEO=角DOE,那么角DOE+角OED=90度,所以OD垂直于EB,由垂径定理知OD垂直平分
联接BEAB由"直径所对圆周角为直角"知角AEB=90度则角AEO+角OED=90度,由AE平行CD,知角AEO=角DOE,那么角DOE+角OED=90度,所以OD垂直于EB,由垂径定理知OD垂直平分