AB垂直于ACAD垂直于BC垂足分别为A,D
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 04:12:01
(1)连接BD、CD因DG垂直且平分BC,所以:BD=CDAD平分∠BAC且DE⊥AB于E,DF⊥AC于FDE=DF∠DEB=∠DFC=90°△BDE≌△CDFBE=CF(2)DE=DF,AD=AD,
因为:PA垂直平面ABC,所以:PA垂直BC,且AB垂直BC,所以BC垂直平面PAB,于是BC垂直AE;且AE垂直PB,可证明AE垂直平面PBC因为AE垂直平面PBC,所以AE垂直PC,且AF垂直PC
因:AB=ACAD垂直BCCE垂直AN得:角ADC=角ANC=90度所:四边形ADCE是矩形当AD为BC中线时.得:AD=CD因上证明.所:四边形ADCE是一个正方形
证明:∵AC垂直于BC,AD垂直于BD,又∵AD=BC∴在直角三角形△ABC和△BAD中AD=BC,AB=BA∴△ABC≌△BAD(斜边直角边定理)所以∠CAE=∠DBF,AC=BD在直角△CAE和直
这是初中平面几何吧?题中有图么?E,C两点应该在直线AB的同一侧吧?如果是,那就这样做:设AC与ED的交点为O,证明出三角形EAD与OAD相似即可.方法如下:由条件得:三角形ABC全等于EAD,所以角
再答:或者这样也可以解:连结DB,AC,取DB中点O,连结OA,OC∵AB=AD∴OA⊥DB同理可证OC⊥DB又∵OA,OC属于平面OAC中∴DB⊥平面OAC又∵AC属于平面OAC中∴AC⊥BD再答:
第一题的确是有问题的,反证如下:我们可以在CD上任取一点M,并作MN垂直于AB连接ME,则如果原命题能够成立即:DE的平方=AE*CE,则同理也可证明DE的平方=AE*ME(所有条件是一样的),这样就
连结BC,AD.设A在面BCD上的射影为O.连结BO,CO,DO.则∵CD⊥AB,CD⊥AO,AB∩AO=A,∴CD⊥面ABO.而BO在平面ABO内,∴BO⊥CD.同理,DO⊥BC.因此,O是△BCD
证明:因为ME平行于DG,DM平行于EF所以四边形DMEN为平行四边形因为三角形ABC是等腰三角形,M是BC的中点所以角B=角C,BM=MC因为角BDM=MEC=90度所以三角形BDM全等于MEC所以
做B点在面ACD上的射影,并延长交AC与B',因为AC⊥BD,所以AC⊥B'D.以B'作原点,以BD作X轴,以AC作Y轴,以通过B'⊥面ADC作Z轴,根据⊥CD,各点设未知数,表示出向量乘积为0,变形
作PO⊥平面ABC于O,连AO,BO,CO.∵PA⊥BC,∴AO⊥BC.同理,BO⊥CA.∴O是△ABC的垂心,∴CO⊥AB,∴PC⊥AB.
∵EF⊥AB∴∠AEF=90°∵DG⊥BC,AC⊥BC∴DG∥AC∴∠2=∠DCA(两直线平行,内错角相等)∵∠1=∠2∴∠1=∠DCA∴EF∥CD(同位角相等,两直线平行)∴∠AEF=∠ADC=90
角NAO=角ONENF平行于EM(通过AE/EB=CM/BM)所以角DNF=角ONE就可以得出ENF是直角其他类似
解题思路:根据题意,由平行线的性质和判定的知识整理可求解题过程:
再答:答案是肯定垂直的,希望能解答你的问题~望采纳~再问:谢谢您的答案,我很满意~~*^o^*
解题思路:证明∠BAD=∠2可得结论解题过程:解:AB∥DG,证明:∵AD⊥BC,EF⊥BC,∴EF∥AD,∴∠1=∠BAD,∵&ang
(1)EF=AE+CF(2)延长EA到G,使AG=FC,证得三角形GAB≌三角形:FCBGA=FC∠GAB=∠FCBAB=CB(SAS)所以得到:∠GBA=∠FBCGB=FBAG=CF因为∠FBC+∠
证明:因为DG垂直于AC所以∠2+∠ACD=90度因为AC垂直于BC所以∠DCB+∠ACD=90度所以∠2+∠ACD=∠DCB+∠ACD所以∠2=∠DCB又因∠1=∠2所以∠1=∠DCB所以DC平行E
在三棱锥P-ABC中,已知PA垂直于BC,PB垂直于AC.求PC垂直于AB.作PH⊥平面ABC,连结AH,BH,CH,则它们分别是斜线PA、PB和PC在平面ABC的射影,根据三垂线逆定理,直线垂直斜线