AB垂直MN CD垂直MN 1=70 求2的度数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:15:07
AB垂直MN CD垂直MN 1=70 求2的度数
DG垂直BC,AC垂直BC,EF垂直AB,角1=角2,求证:CD垂直AB

证明:∵DG⊥BC,AC⊥BC(已知)∴∠DGB=∠ACB=90°(垂直定义)∴DG∥AC(同位角相等,两直线平行)∴∠2=∠ACD(两直线平行,内错角相等)∵∠1=∠2(已知)∴∠1=∠ACD(等量

ab垂直cd

能把题目打出来吗?

如图已知CD垂直AB,BE垂直AC

解题思路:已知BE⊥AC,CD⊥AB可推出∠ADC=∠BDC=∠AEB=∠CEB=90°,由AO平分∠BAC可知∠1=∠2,然后根据AAS证得△AOD≌△AOE,△BOD≌△COE,即可证得OB=OC

如图,四面体ABCD,AB垂直CD,AD垂直BC,AO垂直平面BCD于O,求证AC垂直BD

再答:或者这样也可以解:连结DB,AC,取DB中点O,连结OA,OC∵AB=AD∴OA⊥DB同理可证OC⊥DB又∵OA,OC属于平面OAC中∴DB⊥平面OAC又∵AC属于平面OAC中∴AC⊥BD再答:

在四面体ABCD中,AB垂直CD,AC垂直BD.求证:AD垂直BC.

作AO⊥平面BCD垂足为O连接BO交DC于M连接CO交BD于N由三垂线定理BM⊥DCCN⊥BDO为△BCD的垂心连接DO则DO⊥BC由三垂线定理BC⊥AD

在四面体ABCD中已知AB垂直CD,AC垂直BD求证AD垂直BC,

过B作BE⊥CD交CD于E,过C作CF⊥BD交BD于F,令BE∩CF=O.∵CD⊥AB、CD⊥BE,AB∩BE=B,∴CD⊥平面ABE,又AO在平面ABE内,∴AO⊥CD.∵BD⊥AC、BD⊥CF,A

在四面体ABCD中,AB垂直CD.AD垂直BC.求证AC垂直BD

证明:过A作AO⊥平面BCD于H∴AH⊥CD∵AB⊥CD∴CD⊥平面ABH∴CD⊥BH同理BC⊥AH∴H为△BCD垂心∴CH⊥BD(1)又AH⊥平面BCD∴AH⊥BD(2)由(1)(2)BD⊥平面AC

已知四面体ABCD中,AB垂直CD,AC垂直BD,求证AD垂直BC

证明:作AO垂直平面BCD,垂足为O,则CD垂直AO,有AB垂直CD,所以CD垂直平面ABO,故CD垂直BO.同理CO垂直BD.所以O为垂心,DO垂直BC.可得BC垂直平面ADO,所以AD垂直BC

已知空间四边形OABC中,OA垂直BC,OB垂直AC,求证OC垂直AB.

在空间直角坐标系中记向量OA=a,向量OB=b,向量OC=c则向量BC=向量OC-向量OB=c-b向量AC=向量OC-向量OA=c-a因为OA垂直BC,OB垂直AC所以a(c-b)=0b(c-a)=0

在空间四边形ABCD中,AB垂直CD,BC垂直AD,求证AC垂直BD

连结BC,AD.设A在面BCD上的射影为O.连结BO,CO,DO.则∵CD⊥AB,CD⊥AO,AB∩AO=A,∴CD⊥面ABO.而BO在平面ABO内,∴BO⊥CD.同理,DO⊥BC.因此,O是△BCD

已知a、b是两异面直线,a垂直于平面α,b垂直于平面β,α交β=c,AB垂直于a,AB垂直

因为c属于平面a,c属于平面B,a垂直平面a,b垂直平面B所以a垂直c,b垂直c又因为a垂直AB,b垂直AB所以AB平行c.

(1)C为AB中点,AD垂直AB,BE垂直AB.已知AB=4,AD=1,BE=4,问三角形DCE是不是直角三角形?

1、是三角形,根据勾股定理可知:dc=根号5,ce=2倍根号5,过d点作df垂直be,可知df=4,bf=1,dfe为直角三角形,fe=3,所以de=5,再根据勾股定理可知dce为直角三角形.2、我不

如图,三角形ABC中,AB=AC,P是底边BC上任意一点,PE垂直AB,PF垂直AC,BD垂直AC,PE,PF,BD之间

PE+PF=BD证明:连接AP∵BD⊥AC∴S△ABC=BD×AC/2∵PE⊥AB,AB=AC∴S△APB=PE×AB/2=PE×AC/2∵PF⊥AC∴S△APC=PF×AC/2∵S△APB+S△AP

已知PA垂直平面ABC,AB垂直BC,求证,平面PBC垂直平面PAB

已知PA垂直平面ABC,所以PA垂直AB又因为AB垂直BC所以AB垂直平面PBC所以平面PBC垂直平面PAB

已知在三角形ABC中,AB=AC,AD垂直平面ABC,EC垂直平面ABC,且CE=2AD,求证平面BDE垂直平面BCE

连接ED,延长ED,CA交于点F,连接BF因为AD垂直平面ABC,EC垂直平面ABC所以AD//EC因为CE=2AD所以AD是三角形FCE的中位线所以AF=AC因为AB=AC所以AB=AF=AC所以角

垂直

解题思路:垂直平分线的应用解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/read

已知四面体ABCD的棱AB垂直CD,AC垂直BD,求证:AD垂直BC.

作AO⊥平面BCD垂足为O连接BO交DC于M连接CO交BD于N由三垂线定理BM⊥DCCN⊥BDO为△BCD的垂心连接DO则DO⊥BC由三垂线定理BC⊥AD