AB为零矩阵时,A为什么类型矩阵可以得出B必为零矩阵?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:49:45
不能.矩阵的乘法有零因子,不满足消去律怎么会利用上述结论?
两个矩阵相乘得零,AB=0,其中A为可逆矩阵,则B一定是零矩阵.因为A为可逆矩阵,所以A^(-1)存在,两边同乘以A^(-1)A^(-1)AB=A^(-1)OB=O再问:为什么不能找到一个非零矩阵与A
行列式等于零,Ax=0有非零解,所以存在B.(简单只需取一个解,加上n-1个零解,构成B)
|B|≠0故B可逆故ABB^-1=0*B^-1故A=0
肯定不对啊有一个为0就可以啦有时两个都可以不为0但积仍然是0
取x=(0,...,1,...,0)^T,第i个分量为1,其余为0则x^TAx=aii>0.即得A的主对角线上元素都大于0.再问:x^TAx为什么大于0啊再答:因为A正定
AB的秩永远小于等于A的秩和B的秩两者的最小值
你的条件少了,应当是AB均为n阶非零矩阵
方法一:设A为m×n矩阵,B 为n×s矩阵,则由AB=O知:r(A)+r(B)≤n,又A,B为非零矩阵,则:必有rank(A)>0,rank(B)>0,可见:rank(A)<n,rank(B
首先说一下,PT这里表示P矩阵的转置,P-1表示P矩阵的逆矩阵这里利用“实对称矩阵A为正定矩阵的充要条件为:存在可逆矩阵P,使得A=PTP”来证明已知A,B均正定,则存在可逆矩阵P,Q使得A=PTPB
可以.但A,B必须是同阶方阵若不是同阶方阵,则不行
没这结论A=111111111A为非零矩阵对角线元素不全为0,其行列式等于零再问:那请问这个方法二是什么意思?再问:再答:这说的很清楚了对角线上的元素都等于A的行列式
矩阵A的秩不可能大于它两维尺度(m,n)中最小的那个所以r(A)再问:再问:这个例子的话。。。。再问:答案是小于m再答:本来就该小于m啊?难道我说的不是这个?再问:你说的是n………再答:n
可以AB=0等式两边左乘A^-1即得B=0再问:您好,那如果A不可逆,要如何处理?再答:A不可逆,B就不一定等于0再问:对于这一结论,只能举例吗,能否通过公式说明B不一定等于0?再答:矩阵的乘法有零因
矩阵A的行列式不等于零或非奇异,A就为满秩矩阵,这就是满秩矩阵的定义.
好好把线性代数再翻一翻.这个是个非零矩阵的反证问题.若AB为零,则根据其逆矩阵和B矩阵可逆堆出A矩阵为零.与假设相反.
因为0矩阵的秩为0,只可能与0矩阵相似,也就是说0矩阵也符合那些定理.只是说,非0矩阵不与0矩阵相似再问:能不能再说的明白点?再答:因为零矩阵也可以进行初等变换,那些原理规则什么的零矩阵都符合,所以不
ab=ba可以得到a和b可以同时上三角化,然后就显然了再问:能不能说得再详细一点,高代是自学的,没上过课,学得不太好再答:先去看这个问题http://zhidao.baidu.com/question
又是没悬赏的哈AB=0说明B的列向量都是齐次线性方程组Ax=0的解而B≠0说明Ax=0有非零解所以|A|=0,即A不可逆