ab为直径弧ac等于弧cf
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:55:07
1/4×3.14×4×4-8×4÷2÷2+8×4÷2÷2=1/4×3.14×16=12.56平方厘米寒樱暖暖请及时采纳,(点击我的答案下面的【满意答案】图标)是我前进的动力!如有不明白,直到完成弄懂此
连接CO交AF于H连OEAC弧等于FC弧所以C为AF弧的中点则OC⊥AF因为CD⊥ABOC=OA∠COD=∠AOH△COD≌△AOH则OD=OH则CH=AD可推△EAD≌△EVHAE=CE
因CG垂直于AB,则CD=DG且弧AC=AG;因弧AC等于弧CF,所以弧AG=CF;则角ACG=CAF所以三角形ACE为等腰三角形,AE=CE
求证的结果应该是AF=CF吧?若是我猜的证明如下:延长CD交圆于点P则可知AB⊥CP且平分CP∴弧AP=弧AC∵C是弧AE的中点∴弧AC=弧CE∴弧CE=弧AP∴∠PCA=∠EAC(同弧所对的圆周角相
连接DB设角CBA为角1角DBC为角2∵C为弧AD中点∴弧AC=弧CD∴角1=角2又因为AB是直径∴角ADB=角CFB=90°∴角C=90-角1角CEG=90-角2∴角C=角CEG∴CG=EG
∵AB是⊙O直径CD⊥AB∴弧AC=弧AG∵弧AC=弧CF∴弧AG=弧CF∴∠ACG=∠CAF∴AE=CE
1、添加辅助线BD∵∠ACD=60° ∴∠AOC=60°(有一个角是60°的等腰三角形是等边三角形) ∴∠BOD=60°(对顶角相等)在直角三角形中∠MDO=30°∴线段OM=1/
连接BC、AC∵AB是直径∴∠ACB=90°∵CF⊥AB,即∠CFA=90°∴∠ACF+∠CAF=90°∠CAB+∠ABC=90°∵∠CAF=∠CAB∴∠ACF=∠ABC∵AD=CD∴∠ACD=∠CA
连接OC交BD于H∵C是BD弧的中点∴OC⊥BD∵CE⊥ABOC=OB∴△OCE≌△OBH∴OE=OH可得EF=HFCF=BFCB=CD=6AC=8∴AB=10半径为5CE/CB=AC/AB=8/10
如图,连接OC、OD,OD交AC于E,①因为弧AD=弧DC,所以AE=CE,即点E是AC的中点,又因OA=OC,所以三角形AOC是等边三角形,即有OE⊥AC,又AC‖MN,所以OD⊥MN,即MN是圆O
证明:连接AE,则∠AEB=90° ∵CD⊥AB  
∵弧AC=弧FC∴∠B=∠CAF(等弧所对圆周角相等)∵AB是直径∴AC⊥BC∴∠CAB+∠B=90°∵∠CAB+∠ACD=90°∴∠B=∠ACD∵∠B=∠CAF(已证)∴∠ACD=∠CAF∴CE=A
首先由MD⊥ABCF⊥AB有DM//CF∵ME⊥ACDG⊥AC∴ME//DG从而MWND为平行四边形下面只须证明一组邻边相等△DBM和△ECM中有∠BDM=∠CEM=90°∠B=∠CBM=CM从而△D
证明:连接BN∵B为圆上一点,CN为直径∴∠CBN=90∴∠NCB+∠BNC=90∵CM⊥AB∴∠ACM+∠BAC=90∵∠BAC、∠BNC所对应圆弧均为劣弧BC∴∠BAC=∠BNC∴∠NCB=∠AC
1、证明:连接CE∵直径BC∴∠BEC=90∴∠ACE+∠CME=90∵AD⊥BE∴∠CAD+∠AMB=90∵∠CME=∠ANB∴∠ACE=∠CAD∵∠ACE、∠FBE所对应圆弧都为劣弧EF∴∠ACE
相等连接AD,BD则易知
延长CP交圆于G,则∠ACP=∠PGA又,AC弧等于CE弧所以,∠ACP=∠CAD过D作DH⊥AC于H,H为AC中点又,BC⊥AC,则DH//CB,D即AF中点AD=DF=4/5,即,AF=8/5又,
再问:答案是130度啊再答:圆心角是130,问的是圆周角,应该是65,你在图上也能看出来的。再问:你说得对,可是∠adb是怎么得的90°?我会给你加分的再答:直径所对的圆周角是90度啊,我以为你记得,
证明:连接BC,∵OB是半径,CG⊥AB,∴弧BC=弧BG,∵弧BC=弧CF,∴弧CF=弧BG,∵圆周角∠CBF对弧CF,圆周角∠BCG对弧BG,∴∠CBF=∠BCG,∴BE=CE.