AB为直径,且弦CD垂直AB过B作圆O的切线与AD的延长线交于F

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:59:14
AB为直径,且弦CD垂直AB过B作圆O的切线与AD的延长线交于F
如图,AB为圆O的直径,CD为弦,且CD垂直AB,垂足为H,圆O的半径为4,CD=4倍根号三,圆周上到直线AC距离为3的

oc=4,ch=2根号3,所以oh=2,ah=6,ac=4根号3,如果连接ad的话,则三角形acd为等边三角形,圆周上到直线AC的距离相当于圆周上到直线DC的距离,因为oh=2,所以bh=2,ah=6

如图AB为圆O的直径,CD为弦,且CD垂直AB,垂足为H

1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠

如图、已知AB为圆O的直径、CD是弦、且AB垂直CD于点E,连接AC、OC、BC.

1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D

如图,AB为圆O的直径,CD为圆O的弦,过AB分别作AE垂直于CD于E,BF垂直于CD于F.求证:CE=DF

证明:如图所示,过O作OH⊥CD于H,连接CO,DO,∵AE⊥CD,BF⊥CD,OH⊥CD∴AE∥BF∥OH∵AO=BO(等分定理)∴EH=FH∵OC=CD,OH⊥CD∴CH=DH∴CE=EH-CH=

如图,在梯形ABCD中 AB垂直AD CD垂直AD 且AB+CD=BC 求证 以BC为直径的圆0 与AD相切

证明:过O向AD作垂线,垂足为F,即有OF垂直AD,又有AB垂直AD,CD垂直AD所以OF,AB和CD三条直线互相平行.又O是以BC为直径的圆的圆心,所以O是BC的中点.又OF,AB和CD三条直线互相

如图所示,AB为圆O的直径,CD为弦,且CD垂直AB,垂足为点H

(1)连接ac.co∴co=4∵cd⊥ab∴ch=hd=2根号3在△cho中,co^2=ho^2+ch^2∴ho=2∴∠coh=60°∵co=ao∴△cao为正三角形∴∠bac=60°(2)∵e为弧a

如图,AB为圆O直径,CD为弦且CD垂直AB,垂足为H,圆O的半径为1,CD=根号三,求点O到弦AC距离

连OC,因为CD⊥AB所以CH=CD/2=√3/2在直角三角形OCH中,由勾股定理,得,OH^2=OC^2-CH^2=1-3/4=1/4解得OH=1/2所以OH=CO/2所以∠COA=60°,因为OA

如图 ,AB为圆O的直径,CD是弦,且AB垂直CD于E.连接AC、OC、BC.求证:角ACO=角BCD

证明:因为OA=OC所以∠ACO=∠A因为AB为圆O的直径,CD是弦,且AB垂直CD于E所以弧BC=弧BD所以∠A=∠BCD(等弧所对的圆周角相等)所以∠ACO=∠BCD供参考!JSWYC

如图,AB为圆O的直径弦CD垂直于AB,垂足为点E,CF垂直于AF,且CF=CE

(1)证明:连接OC.∵CE⊥AB,CF⊥AF,CE=CF,∴AC平分∠BAF,即∠BAF=2∠BAC.∵∠BOC=2∠BAC,∴∠BOC=∠BAF.∴OC∥AF.∴CF⊥OC.∴CF是⊙O的切线.

如图 AB为圆O的直径,CD为弦,过C、D分别作CN垂直CD DM垂直CD,分别交AB于N M 请问AN与BM是否相等?

相等呀~.链接0C和0D.因为0是圆心,CD分别是圆上两点.所以OC=OD,都是半径呀.三角形OCD是等腰梯形.做CD边的高,这个高肯定垂直于CD.所以和MD还有NC都平行.

如图,已知⊙O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA = EC.

1、连接BC,则:∠EAC=∠ECA=∠BAC=∠BCA所以:△ABC∽△ACE所以:AB/AC=AC/AE所以:AC²=AB*AE2、连接BC,BO则:∠ABC=∠BAC而∠PEB=∠EA

如图,已知圆O的直径AB垂直于弦CD,垂足为E点,过C点作CG‖AD,交AB的延长线与点G,连OD,且OD恰好平分角AD

给你一个思路吧.连接AC,可以证明ABC是一个等边三角形.所以角OCE为30度,OC=2OE=OB,则E为OB的中点.CF垂直于AD,CG又平行于AD,所以CF垂直于CG,故CG为圆的切线.AB=8,

ab是圆o的直径 c d是圆o的弦,且ab垂直cd,垂足为e,求bc等于bd

证明:在圆O中∵AB为直径CD为弦∵AB⊥CD∴CE=DE∠AED=∠AEC∵AE=AE∴Rt△AED≌Rt△AEC∴∠CAE=∠DAE∴弧BC=弧BD∴BC=BD(相等的弧所对的弦相等)再问:若bc

已知AB为⊙O的直径,CD是弦,且AB垂直与点E,连接AC、OC、BC,求证:∠ACO=∠BCD

∵AB为⊙O的直径,AB⊥CD∴∠ACB=∠CEB=90度在△ABC和△CBE中∵∠ACB=∠CEB,∠B=∠B∴∠A=∠BCD又OC=OA∴∠A=∠ACO∴∠ACO=∠BCD

AB为圆O的直径,且弦CD垂直AB于点E,过点B的切线与AD的延长线交于点F,若cosC=4/5,DF=3,求MN⊥BC

额,你看看这个比较详细的解析吧,http://www.qiujieda.com/math/82917/,应该可以给你很大帮助滴,这儿数理化题目巨多的呢,你好好利用撒

如图所示,已知圆O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA=EC.

已知,EA=EC,可得:∠ACE=∠CAE.CD是AB的垂直平分线,可得:AC=BC,则有:∠BAC=∠ABC.在△ACE和△ABC中,∠ACE=∠CAE=∠BAC=∠ABC,所以,△ACE∽△ABC

已知ab为圆o的直径,cd是弦,且ab垂直于点e,连结ac、oc、bc

(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图

如图所示,已知AB是圆O的直径,CD是圆O的弦,过A作AE垂直CD,过B作AF垂直CD,垂足分别为点E、F,AB=20c

发图你哈再答:再问:OD=1/2AB???再答:都是圆半径再问:帮我普及一下梯形关系,是两腰的中点连线等于上低加下底的一半吗?再答:嗯再答:中位线再问:怎么证明EC=DF?我只能证明圆里面的垂直平分.

圆O的半径为10,G是直径AB上一点,弦CD过点G,CD等于16,AE垂直CD,垂足为 E,BE垂直CD,垂足为F,求A

不用啊,很简单吧.延长AE交圆于H因为AB是直径,所以AH⊥BH,所以四边形EHBF是矩形.BF=EH,BH∥CD设圆心是O,做OM⊥BH交BH于M,交CD于NON²=100-64=36【弦