AB为圆O的直径,弦CD垂直AB于点H,过点B做圆O的切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:07:20
25-16=9答案=3再问:还是不会可以详细写吗?再答:10/2=58/2=45*5-4*4=3*3UNDERSTAND?
1,∵E是弧ADB的中点,AB是圆O的直径∴OE⊥AB∴DC∥OE∴∠OEC=∠ECD∵△OEC是等腰三角形∴∠OEC=∠OCE∴∠OCE=∠ECD∴CE平分∠OCD2,∵∠BAC=∠HCB=30,∠
因为∠A=∠C(同弧的圆周角相等)因为∠BEC=90(AB⊥CD)EG⊥BC所以∠C=∠GEB=∠HEA(对顶角)所以∠A=∠HEA所以AH=HE所以同理可证明DH=HE所以AH=DH
1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D
证明:如图所示,过O作OH⊥CD于H,连接CO,DO,∵AE⊥CD,BF⊥CD,OH⊥CD∴AE∥BF∥OH∵AO=BO(等分定理)∴EH=FH∵OC=CD,OH⊥CD∴CH=DH∴CE=EH-CH=
(1)连接ac.co∴co=4∵cd⊥ab∴ch=hd=2根号3在△cho中,co^2=ho^2+ch^2∴ho=2∴∠coh=60°∵co=ao∴△cao为正三角形∴∠bac=60°(2)∵e为弧a
连OC,因为CD⊥AB所以CH=CD/2=√3/2在直角三角形OCH中,由勾股定理,得,OH^2=OC^2-CH^2=1-3/4=1/4解得OH=1/2所以OH=CO/2所以∠COA=60°,因为OA
(1)证明:连接OC.∵CE⊥AB,CF⊥AF,CE=CF,∴AC平分∠BAF,即∠BAF=2∠BAC.∵∠BOC=2∠BAC,∴∠BOC=∠BAF.∴OC∥AF.∴CF⊥OC.∴CF是⊙O的切线.
可得OE是CD的十分之三,可的OE为二分之九,在三角形OAE中可得AE为六,AB为十二,在三角形CAE中AC为三倍根号二十
证明:在三角形ABC中,AB是直径,C是圆上的点所以角ACB=90,即BC垂直于ACOF垂直AC所以OF平行BC∵AB⊥CD∴CE=1/2CD=5√3cm.在直角△OCE中,OC=OB=x+5(cm)
设AB与CD相较于G点,过圆心O做CD的垂线,使OH垂直于CD,则由相似定理GH/HE=GO/OA=GO/OB=HG/FH,所以HE=FH,又由于CH=DH,所以CE=DF自己画图慢慢体会吧,不知道你
由点到直线的距离的定义,即点到直线的垂线段的长度可知A,B两点到直线CD的距离之和=ae+be=ab=10cm
设:o到CD的距离为d,因为圆的直径AB,垂直于弦CD,由垂径定理知:CH=根3/2,由CH²=AH.BH,即3/4=(1-d)(1+d),即d²=1-3/4=1/4,.解得d=1
(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图
发图你哈再答:再问:OD=1/2AB???再答:都是圆半径再问:帮我普及一下梯形关系,是两腰的中点连线等于上低加下底的一半吗?再答:嗯再答:中位线再问:怎么证明EC=DF?我只能证明圆里面的垂直平分.
连接AO,BO,CO,DO.等腰三角形ABO,由等腰三角形三线合一知MN过圆心O.又MN垂直AB,AB平行CD所以MN垂直CD.等腰三角形CDO,由等腰三角形三线合一知MN就是CD的垂直平分线.
∵CD是⊙O的直径,AB⊥CD∴AE=BE∵AB=10∴AE=5设OA=R∴OE=R-1根据勾股定理:R²=5²+(R-1)²解得R=13∴CD=2R=26
不用啊,很简单吧.延长AE交圆于H因为AB是直径,所以AH⊥BH,所以四边形EHBF是矩形.BF=EH,BH∥CD设圆心是O,做OM⊥BH交BH于M,交CD于NON²=100-64=36【弦