AB为圆O的直径,取CB的中点E,tan角C=2,求AF AE的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:54:59
连结AE,EO则:∠BEA=90°,∠BAC=90°证得∠B=∠C=45°所以∠EOA=90°三角形CEA为等腰直角三角形,EF为斜边中线、高四边形OEFA为正方形,EF垂直OE,所以EF是圆的切线
证明:连接OE,OG,DE∵CD是△ABC的边AB上的高∴∠BDC=∠ADC=90°∵点G是AD的中点∴AG=GD又∵OC=OD∴OG是△ACD的中位线∴OG=1/2AC∵CD是⊙O的直径∴∠AED=
用勾股定理啊,连结OC,OC方等于OE方加CE方,OC=ROE=R-2CE=4
连接BD∵CD垂直于AB∴BC=BD∠DBC=2∠CBA∴∠AOE=∠DBM∵∠BAE=∠BDE∴△AOE∽△DBM∴MB/DB=EO/AO∵EO=CO/2=AO/2∴MB=BD/2=BC/2即CM=
因AB为直径ac为切线所以角bac为直角因af=fc(f为ac中点)ao=bo(两者均为半径)所以fo平行且等于二分之一倍的cb又因为ae垂直于bc所以ae垂直fo于G点所以角aof=角eof(等腰三
连结AC,CE切圆O于点C=>∠ECB=∠A,AB为圆O的直径=>∠ACB=90=>∠A+∠B=90∠B+DCB=90=>∠A=∠DCB,∴∠ECB=∠DCB =&g
连接AEEO角EAB加FAE是90EAB等于AEOAEF等于FAEAEB是90AEF加AOE是90
连接AD∠CAD=∠B∠CDA=∠CAB=90°△ACD∽△CABAC:BC=CD:ACAC²=CD×BC=2×8AC=4∠B=30°.即tanB=根号3/3
连接AD∠CAD=∠B∠CDA=∠CAB=90°△ACD∽△CABAC:BC=CD:ACAC²=CD×BC=2×8AC=4sinB=AC/BC=4/8=1/2
证明:(证法一)连接OE,DE,∵CD是⊙O的直径,∴∠AED=∠CED=90°,∵G是AD的中点,∴EG=12AD=DG,∴∠1=∠2;∵OE=OD,∴∠3=∠4,∴∠1+∠3=∠2+∠4,∴∠OE
(1)第一空填等腰直角(2)问题二:AE=BF证:连结PE、BP和AP,由同弧所对圆周角相等得∠PEQ=∠PFQ,∠PBQ=∠PAQ,由P为AB弧的中点得AP=BP得△APE全等于△BPF,得AE=B
在⊙O中,∵AB是直径,∴∠ACD=90º,∠ADB=90º又∵AC=8,BC=6∴AB=10;∵点D是弧AB的中点∴BD=AD∴2AD2=AB2∴AD=BD=5√2
(1)求证:DE⊥ACBC为直径,∠CDB=90°;∠CDA=∠CDB=90°;CA=CB,∠A=∠B,所以∠ACD=∠BCD,∠B=∠CDE,[弧DC所对圆周角=弧DC所对圆切角]∠CDE+∠ACD
(1)连接OD、OE,因O、E是中点,所以OE//AC,所以,角EOD=角ODA=角OAD=角BOE,又因为OB=OD,OE=OE,所以三角形OBE相似与三角形ODE,所以角ODE=角OBE=90°,
∵OE⊥BC∴E为BC中点∴BE=CE=4设半径为r则OD=rOE=OD-ED=r-2在三角形OBE中有OB²=BE²+OE²即r²=4²+(r-2)
∵AB⊥CD,AB为直径,∴CE=1/2CD=3,连接OC,则OC=1/2AB=5,∴OE=√(OC²-CE²)=4,∴BC=√(BE²+CE²)=3√10,A
图所示:因为AD切圆o于点A,而AB是圆的直径所以AB⊥AD又因为弧EC=弧CB所以∠BOC=∠COE因为弧CE对应的圆周心是∠COE,而对应的圆周角是∠CAE所以∠COE=2∠CAE因为弧CB对应的
我默认了AB为直径,O是弧AB的中点,则AB=根号34,由托勒密定理可知OM=根号2,再用余弦定理+正弦定理可知S△OMB=1/2*5*根号2*根号2*=5/2再问:非常感谢,能用小学学的几何知识解答
证明:连接OE,连接DE.∵CD为圆O的直径,∴DE⊥AC,又∵G为AD中点,由直角三角形的性质有:EG=GD=1/2AD;又∵OE=OD=半径OG=OG∴△OEG≌△ODG你的好评是我前进的动力.我
题有错,改为:已知CD是三角形AB边上的高,以CD为直径的圆O分别交CA、CB于E、F,点G是AD的中点.求证:GE是圆O的切线.设CD中点(即圆O的圆心)为H,连接HE、DE,则∠DEC=∠DEA=